www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Trennen der Veränderlichen
Trennen der Veränderlichen < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennen der Veränderlichen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Di 30.11.2010
Autor: newflemmli

Aufgabe
[mm] y'=\bruch{-x*y}{1+x^2} [/mm]

also Trennen der Veränderlichen:

[mm] \bruch{dy}{dx}=\bruch{-x}{1+x^2} [/mm] * y

[mm] dy=\bruch{-x}{1+x^2} [/mm] * y * dx    


[mm] \bruch{dy}{y}=\bruch{-x}{1+x^2} [/mm] *dx


dann integriere ich beide Seiten

ln(y) =  [mm] \bruch{1}{2} [/mm] * [mm] ln(x^2 [/mm] + 1)

y =  [mm] \bruch{1}{2} [/mm] * [mm] (x^2 [/mm] + 1)

was stimmt den nun nicht :(




        
Bezug
Trennen der Veränderlichen: Korrektur
Status: (Antwort) fertig Status 
Datum: 16:36 Di 30.11.2010
Autor: Loddar

Hallo newflemmli!


> [mm]\bruch{dy}{y}=\bruch{-x}{1+x^2}[/mm] *dx

[ok]


> dann integriere ich beide Seiten
>  
> ln(y) =  [mm]\bruch{1}{2}[/mm] * [mm]ln(x^2[/mm] + 1)

[notok] Wo ist das Minuszeichen auf der rechten Seite hin?
Zudem fehlt die Integrationskonstante $+C_$ .


> y =  [mm]\bruch{1}{2}[/mm] * [mm](x^2[/mm] + 1)

Diese Umformung stimmt nicht. Um den Logarithmus weglassen zu dürfen, musst Du zunächst auch den Faktor davor in den Logarithmus ziehen.


Gruß
Loddar


Bezug
                
Bezug
Trennen der Veränderlichen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:40 Di 30.11.2010
Autor: newflemmli

ah okay das heißt es muss:

ln(y) =  (-1) [mm] \bruch{1}{2} [/mm] $ *  [mm] ln(x^2 [/mm] $ + 1)

heißen.

Jetzt muss ich das mit dem Log. machen? Ich dachte man kann einfach mit [mm] e^x [/mm] das wegfallen lassen? Wie genau mache ich das jetzt, ich nehme an es geht um die rechte Seite?

Bezug
                        
Bezug
Trennen der Veränderlichen: ich trottel...
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 30.11.2010
Autor: newflemmli

einfach 1/2 mit log gesetz rein oda?

[mm] (x^2+1)^{1/2} [/mm] = [mm] \wurzel{x^2+1} [/mm]

also ln(y) = [mm] ln(\wurzel{x^2+1} [/mm]

nun fehlt nur noch der letzte schritt denn das minus darf ich ja nicht vergessen.

kann ich dann :
[mm] (x^2+1)^{-1/2} [/mm] = 1 / [mm] \wurzel{x^2+1} [/mm] schreiben=

Bezug
                                
Bezug
Trennen der Veränderlichen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 16:51 Di 30.11.2010
Autor: Loddar

Hallo newflemmli!


So sieht es nun gut aus. Es fehlt nur noch die Integrationskonstante.


Gruß
Loddar


Bezug
                                        
Bezug
Trennen der Veränderlichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:52 Di 30.11.2010
Autor: newflemmli

also zur vollständigkeit, damit es alle nachlesen können bei bedarf:

y = [mm] \bruch{1}{x^2+1} [/mm] + c


DANKE DIR :D

Bezug
                                                
Bezug
Trennen der Veränderlichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 30.11.2010
Autor: schotti

nicht plus sondern mal c

Bezug
                                                
Bezug
Trennen der Veränderlichen: Wo ist die Wurzel?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Di 30.11.2010
Autor: Loddar

Hallo newflemmli!


Wo ist die Wurzel hin?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de