www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Trennung der Variablen
Trennung der Variablen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennung der Variablen: Stammfunktionen
Status: (Frage) beantwortet Status 
Datum: 11:25 Mi 08.10.2008
Autor: TTaylor

Hallo ich würde gerne die Aufgabe :
[mm]2xz'z= z^2-1 [/mm]durch Trennen der Variablen lösen.
z'= 1/2x * [mm] (z^2-1)z [/mm]
ich muss hier doch eine Stammfkt zu [mm]\bruch{1}{(z^2-1)z} [/mm]und zu 1/2x  bilden.
Ich bin leider zu doof solche Stammfuntionen zu bilden.

Könnte mir bitte jemand helfen.

        
Bezug
Trennung der Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Mi 08.10.2008
Autor: fred97


> Hallo ich würde gerne die Aufgabe :
>  [mm]2xz'z= z^2-1 [/mm]durch Trennen der Variablen lösen.
>  z'= 1/2x * [mm](z^2-1)z[/mm]
>  ich muss hier doch eine Stammfkt zu [mm]\bruch{1}{(z^2-1)z} [/mm]und
> zu 1/2x  bilden.
>  Ich bin leider zu doof solche Stammfuntionen zu bilden.
>  
> Könnte mir bitte jemand helfen.


[mm] \bruch{1}{(z^2-1)z} [/mm] = [mm] \bruch{1}{(z-1)(z+1)z} [/mm]

Jetzt Partialbruchzerlegung


Bei [mm] \bruch{1}{2x} [/mm] denke an den Logarithmus

FRED

Bezug
        
Bezug
Trennung der Variablen: anders umgeformt
Status: (Antwort) fertig Status 
Datum: 11:38 Mi 08.10.2008
Autor: Roadrunner

Hallo TTaylor!


> Hallo ich würde gerne die Aufgabe :
>  [mm]2x*z'*z= z^2-1 [/mm] durch Trennen der Variablen lösen.

Hier erhalte ich nach der Umformung aber:
[mm] $$\bruch{z}{z^2-1} [/mm] \ dz \ = \ [mm] \bruch{1}{2}*\bruch{1}{x} [/mm] \ dx$$
Auf der linken Seite kannst Du mittels Substitution $u \ := \ [mm] z^2-1$ [/mm] bzw. mittels logarithmischer Integration vorgehen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Trennung der Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:11 Mi 08.10.2008
Autor: TTaylor


> Hier erhalte ich nach der Umformung aber:
>  [mm]\bruch{z}{z^2-1} \ dz \ = \ \bruch{1}{2}*\bruch{1}{x} \ dx[/mm]
>  
> Auf der linken Seite kannst Du mittels Substitution [mm]u \ := \ z^2-1[/mm]
> bzw. mittels logarithmischer Integration vorgehen.
>  

Also mir ist jetzt klar: 1/2 ln|x|.
Aber das mir der Substitution verstehe ich immer noch nicht.
[mm]\bruch{\wurzel{u+1}}{u}[/mm].

wie erhalt ich dann hier die Stammfunktion. Ich verstehe es einfach nicht.

Bezug
                        
Bezug
Trennung der Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:20 Mi 08.10.2008
Autor: Herby

Hallo,

> > Hier erhalte ich nach der Umformung aber:
>  >  [mm]\bruch{z}{z^2-1} \ dz \ = \ \bruch{1}{2}*\bruch{1}{x} \ dx[/mm]

Ich hätte die 2 gleich auf der linken Seite gelassen, dann hast du nämlich folgende Situation

[mm] \integral{\bruch{f'(x)}{f(x)}\ dx}=ln|f(x)|+C\quad \text{f"ur\ alle}\quad C\in\IR [/mm]

schau' mal genau hin:

[mm] \integral{\bruch{2z}{z^2-1}\ dz}=.... [/mm]


Liebe Grüße
Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de