www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Trennung der Veränderlichen
Trennung der Veränderlichen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennung der Veränderlichen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 07.02.2008
Autor: chipbit

Aufgabe
Bestimmen Sie die allgemeine Lösung [mm] f\in\mathcal C^1(\IR) [/mm] der Differentialgleichung [mm] f'(t)=3t^{2}f(t) [/mm] mit Hilfe der Trennung der Veränderlichen.

Hi Leute,
kann mir wer bei dieser Aufgabe helfen? Ich weiß nicht so recht wie das funktioniert und hab bisher keinen gefunden der mir das erklären kann. Wer mag kann mir das auch versuchen an einem Beispiel zu zeigen, vielleicht verstehe ich das dann. Ich bin für jede Hilfe dankbar. :-)

        
Bezug
Trennung der Veränderlichen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:15 Do 07.02.2008
Autor: Martinius

Hallo chipbit,

> Bestimmen Sie die allgemeine Lösung [mm]f\in\mathcal C^1(\IR)[/mm]
> der Differentialgleichung [mm]f'(t)=3t^{2}f(t)[/mm] mit Hilfe der
> Trennung der Veränderlichen.
>  Hi Leute,
>  kann mir wer bei dieser Aufgabe helfen? Ich weiß nicht so
> recht wie das funktioniert und hab bisher keinen gefunden
> der mir das erklären kann. Wer mag kann mir das auch
> versuchen an einem Beispiel zu zeigen, vielleicht verstehe
> ich das dann. Ich bin für jede Hilfe dankbar. :-)

es ist etwas praktischer, wenn Du erst einmal umformulierst:

[mm]f'(t)=3t^{2}*f(t)[/mm]

[mm]\dot y=3t^{2}*y[/mm]

[mm] $\bruch{dy}{dt} [/mm] = [mm] 3t^2*y$ [/mm]

Jetzt, wie der Name schon sagt, die Variablen separieren; d. h., alle y auf eine Seite, auf die andere alle t:

[mm] $\bruch{1}{y}*dy [/mm] = [mm] 3t^2*dt$ [/mm]

Dann integrieren:

[mm] $\integral \bruch{1}{y}\;dy [/mm] = [mm] \integral 3t^2\;dt$ [/mm]

$ln|y| = [mm] t^3+ln|C|$ [/mm]

,nun den ln auflösen, mit [mm] e^{ln|C|} [/mm] = |C|

$|y| = [mm] e^{t^3}*|C|$ [/mm]

, dann die Betragsstriche auflösen

$y = [mm] C*e^{t^3}$ [/mm]

und fertig ist die Lösung der DGL.

Eine elementare Einführung in DGL's findest Du z. B. in L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Bd. II. Steht bestimmt in jeder Uni-Bibliothek.


LG, Martinius


Bezug
                
Bezug
Trennung der Veränderlichen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Do 07.02.2008
Autor: chipbit

Mh, das ich da nicht selber drauf gekommen bin...
Ich danke dir!! Zumindest kann ich das ziemlich gut nachvollziehen! Ich denke ich werde mir das Buch mal ausleihen und ansehen, kann ja nichts schaden :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de