www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Trigonometrische Gleichung
Trigonometrische Gleichung < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Fr 18.05.2012
Autor: hase-hh

Aufgabe
An welchen Stellen nimmt die Funktion f(x) den Wert 10 an?

f(x) = [mm] 3*sin(\bruch{2 * \pi}{28}*x) [/mm] +12


Moin, Moin!

Ich suche also die Lösungen der Gleichung

f(x) = 10

[mm] 3*sin(\bruch{2 * \pi}{28}*x) [/mm] +12 = 10

[mm] sin(\bruch{2 * \pi}{28}*x) [/mm] = - [mm] \bruch{2}{3} [/mm]

Substitution:   z = [mm] \bruch{2 * \pi}{28}*x [/mm]


sin(z) = - [mm] \bruch{2}{3} [/mm]    | arcsin

z = -0,7297

Dieser Wert ist (leider) negativ.

Wie komme ich denn jetzt auf den ersten positiven Wert?

plus [mm] \pi [/mm] ?  


Danke für eure Hilfe!




        
Bezug
Trigonometrische Gleichung: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 19:38 Fr 18.05.2012
Autor: MathePower

Hallo hase-hh,

> An welchen Stellen nimmt die Funktion f(x) den Wert 10 an?
>  
> f(x) = [mm]3*sin(\bruch{28}{2 * \pi}*x)[/mm] +12
>  Moin, Moin!
>  
> Ich suche also die Lösungen der Gleichung
>
> f(x) = 10
>  
> [mm]3*sin(\bruch{28}{2 * \pi}*x)[/mm] +12 = 10
>  
> [mm]sin(\bruch{28}{2*\pi}*x)[/mm] = - [mm]\bruch{2}{3}[/mm]
>  
> Substitution:   z = [mm]\bruch{28}{2 * \pi}*x[/mm]
>  
>
> sin(z) = - [mm]\bruch{2}{3}[/mm]    | arcsin
>  
> z = -0,7297
>  
> Dieser Wert ist (leider) negativ.
>
> Wie komme ich denn jetzt auf den ersten positiven Wert?
>  
> plus [mm]\pi[/mm] ?  
>


Nein,plus [mm]2\pi[/mm].


>
> Danke für eure Hilfe!
>  


Gruss
MathePower

Bezug
                
Bezug
Trigonometrische Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Fr 18.05.2012
Autor: hase-hh

Also...

z = -0,7297

[mm] z_1 [/mm] = -0,7297 + [mm] 2*\pi [/mm]

1. Lösung          2. Lösung
[mm] z_1 [/mm] = 5,5535  -----  [mm] z_2 [/mm] = [mm] \pi [/mm] - [mm] z_1 +2*\pi [/mm]

                   [mm] z_2 [/mm] = 3,8713


Resubstituieren

[mm] z_1 [/mm] = [mm] \bruch{2*\pi}{28}*x_1 [/mm]  -----  [mm] z_2 [/mm] = [mm] \bruch{2*\pi}{28}*x_2 [/mm]

5,5535 = [mm] \bruch{2*\pi}{28}*x_1 [/mm]     3,8713 = [mm] \bruch{2*\pi}{28}*x_2 [/mm]

[mm] x_1 [/mm] = 24,748                            [mm] x_2 [/mm] = 17,252


richtig?

Bezug
                        
Bezug
Trigonometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Fr 18.05.2012
Autor: MathePower

Hallo hase-hh,

> Also...
>
> z = -0,7297
>  
> [mm]z_1[/mm] = -0,7297 + [mm]2*\pi[/mm]
>  
> 1. Lösung          2. Lösung
>  [mm]z_1[/mm] = 5,5535  -----  [mm]z_2[/mm] = [mm]\pi[/mm] - [mm]z_1 +2*\pi[/mm]
>  
> [mm]z_2[/mm] = 3,8713
>  


[ok]

>
> Resubstituieren
>  
> [mm]z_1[/mm] = [mm]\bruch{2*\pi}{28}*x_1[/mm]  -----  [mm]z_2[/mm] =
> [mm]\bruch{2*\pi}{28}*x_2[/mm]
>  
> 5,5535 = [mm]\bruch{2*\pi}{28}*x_1[/mm]     3,8713 =
> [mm]\bruch{2*\pi}{28}*x_2[/mm]
>  


Du hast doch substituiert:

[mm]z=\bruch{28}{2\pi}x[/mm]


> [mm]x_1[/mm] = 24,748                            [mm]x_2[/mm] = 17,252
>  
>
> richtig?


Gruss
MathePower

Bezug
                                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Fr 18.05.2012
Autor: hase-hh


> Du hast doch substituiert:
>  
> [mm]z=\bruch{28}{2\pi}x[/mm]

Äh, die Substitution hätte lauten müssen... (s.o.)

z = [mm] \bruch{2*\pi}{28}*x [/mm]


Bezug
                
Bezug
Trigonometrische Gleichung: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 20:30 Fr 18.05.2012
Autor: Event_Horizon

Hallo!

Das war etwas voreilig!
Die Funktion sin(z) ist zwar [mm] 2\pi [/mm] -periodisch, aber es geht hier um den Schnittpunkt einer konstanten mit der sin-Funktionen, und es gibt derlei zwei  in einem [mm] 2\pi [/mm] -Intervall.


Die arcsin-Funktion liefert nur Winkel von [mm] -\pi/2 [/mm] bis [mm] +\pi/2 [/mm] zurück, und daher in diesem Fall den Wert -0,7. Dann kann man sich geometrisch überlegen, daß die nächste Stelle bei [mm] \pi/2+(\pi/2-(-0,7))=\pi-(-0,7)=\pi+0,7 [/mm] liegt:

[Dateianhang nicht öffentlich]




EDIT: Ich hab was lang gebraucht. Aber es hat sich mittlerweile ja geklärt, daß da noch ne weitere Lösung bei 3,8 existiert...

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:44 Fr 18.05.2012
Autor: hase-hh

Vielen Dank...!!  Dein Weg führt aber zur selben Lösung?!



Bezug
                        
Bezug
Trigonometrische Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:02 Fr 18.05.2012
Autor: Event_Horizon

Hallo!

Meine Antwort bezog sich auf die erste Antwort von MathePower, in der er sagt, daß man einfach [mm] 2\pi [/mm] hinzuaddieren muß. Das ist zwar auch eine Lösung, aber nicht die, die du suchst. Aber hinterher schreibst du selbst was von 3,8, und das ist die erste positive lösung.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de