www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Triviale Darstellung und
Triviale Darstellung und < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Triviale Darstellung und: eindeutig bestimmte Lösung
Status: (Frage) beantwortet Status 
Datum: 12:32 Mi 16.02.2011
Autor: sardelka

Hallo,

ich komme mit diesen zwei Begriffen nicht klar.

Ist es richtig, dass wenn sich  als [mm] a_{1} \vec{v_{1}} [/mm] + [mm] a_{2} \vec{a_{1}} [/mm] + .. + [mm] a_{n} \vec{v_{n}} [/mm] = 0 darstellen lässt, dann ist es eine triviale Darstellung = eine eindeutige Darstellung. Und die Vektoren sind linear unabhängig.

Und wenn es mit linear abhängigen Vektoren sich darstellen lässt, dann ist es [mm] \vec{0} [/mm] = [mm] \summe_{k=1}^{l} \vec{v_{k}}, [/mm] nicht-triviale Darstellung.

Was ist richtig, was ist falsch?

Vielen Dank

MfG

        
Bezug
Triviale Darstellung und: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Mi 16.02.2011
Autor: kamaleonti

Hi,

> Ist es richtig, dass wenn sich  als [mm]a_{1} \vec{v_{1}}[/mm] +
> [mm]a_{2} \vec{v_{2}}[/mm] + .. + [mm]a_{n} \vec{v_{n}}[/mm] = 0 darstellen
> lässt, dann ist es eine triviale Darstellung = eine
> eindeutige Darstellung. Und die Vektoren sind linear
> unabhängig.

Den Nullvektor kann man aus linear unabhängigen Vektoren nur auf die von dir beschriebene triviale Weise darstellen: Alle Skalare sind Null.

>  
> Und wenn es mit linear abhängigen Vektoren sich darstellen
> lässt, dann ist es [mm]\vec{0}[/mm] = [mm]\summe_{k=1}^{l} \vec{v_{k}},[/mm]
> nicht-triviale Darstellung.

Das ist schon weniger exakt. Wenn ein System von linear abhängigen Vektoren gegeben ist, so gibt es keine eindeutige Darstellung des Nullvektors aus den Vektoren des linear abhängigen Systems. Die triviale Lösung (siehe oben) bleibt bestehen, aber es existieren noch weitere und diese werden als nichttrivial bezeichnet.

Gruß


Bezug
                
Bezug
Triviale Darstellung und: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Mi 16.02.2011
Autor: sardelka

Heißt es, es existieren einmal die triviale Darstellung und zusätzlich einige andere Vektoren, die man einfach einzeln aufzählt?

LG

Bezug
                        
Bezug
Triviale Darstellung und: Antwort
Status: (Antwort) fertig Status 
Datum: 13:02 Mi 16.02.2011
Autor: fred97

Vielleicht hilft ein Beipiel:

Nehmen wir die  3 Vektoren

        [mm] \vektor{1 \\ 1 \\ 0}, \vektor{1 \\ 1 \\ 1}, \vektor{2 \\ 2 \\ 1} \in \IR^3 [/mm]

Diese sind linear abhängig, denn es gilt:

         $1* [mm] \vektor{1 \\ 1 \\ 0}+1*\vektor{1 \\ 1 \\ 1}+(-1)*\vektor{2 \\ 2 \\ 1} [/mm] =  [mm] \vektor{0 \\ 0 \\ 0}$ [/mm]

Obiges ist also eine nichttriviale Darstellung von  [mm] \vektor{0 \\ 0 \\ 0}. [/mm]

Neben dieser Darstellung hat man natürlich auch noch die triviale Darstellung:

         $0* [mm] \vektor{1 \\ 1 \\ 0}+0*\vektor{1 \\ 1 \\ 1}+0*\vektor{2 \\ 2 \\ 1} [/mm] =  [mm] \vektor{0 \\ 0 \\ 0}$ [/mm]

FRED

Bezug
                                
Bezug
Triviale Darstellung und: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mi 16.02.2011
Autor: sardelka

Danke sehr, ja es hat sehr geholfen.

Wenn ich aber eine Aufgabe mit lin abh. Vektoren bekomme, und ich soll bestimmen, ob es eine triviale ist oder nicht, kann ich es nicht sagen, weil bei lin. abh. beides möglich ist??
Oder muss ich immer einfach die Linearkombination aufstellen und ob es eine triviale oder nicht-triviale ist dann nicht gefragt, weil es ja beides sein kann?
Das gilt aber nur für die lin. abh. Vektoren, oder nicht? Lin. unabh. lassen sich nur durch eine triviale Darst. darstellen, richtig??

Und zu was gehört eigentlich eindeutig bestimmte Lösung? Ist damit dasselbe wie triviale Darstellung gemeint?

Tut mir Leid für die Quälerei.

MfG

Bezug
                                        
Bezug
Triviale Darstellung und: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mi 16.02.2011
Autor: schachuzipus

Hallo sardelka,



> Danke sehr, ja es hat sehr geholfen.
>  
> Wenn ich aber eine Aufgabe mit lin abh. Vektoren bekomme,
> und ich soll bestimmen, ob es eine triviale ist oder nicht,
> kann ich es nicht sagen, weil bei lin. abh. beides möglich
> ist??

Puh, das ist kraus. Wenn du doch schon vorab weißt, dass die Vektoren lin. abh. sind, so weißt du schon, dass es neben der trivialen Darstellung auch eine nicht-triviale gibt.

Wie die letztlich aussieht, kannst du dann berechnen ...

>  Oder muss ich immer einfach die Linearkombination
> aufstellen

Ja!

> und ob es eine triviale oder nicht-triviale ist
> dann nicht gefragt, weil es ja beides sein kann?
>  Das gilt aber nur für die lin. abh. Vektoren, oder nicht?
> Lin. unabh. lassen sich nur durch eine triviale Darst.
> darstellen, richtig??
>  
> Und zu was gehört eigentlich eindeutig bestimmte Lösung?
> Ist damit dasselbe wie triviale Darstellung gemeint?

Puh, wahrlich durcheinander foruliert ;-)

Nochmal:

Du hast irgendeine Menge von Vektoren [mm]\{v_1,...v_n\}[/mm] gegeben und willst entscheiden, ob diese Menge linear unabh. ist oder nicht.

Dazu setzt du die LK des Nullvektors aus all diesen Vektoren an.

Die triviale LK, in der alle Koeffizienten in der LK =0 sind, ist immer eine Lösung.

Das ist ja klar, denn [mm]0\cdot{}\vec v_1+0\cdot{}\vec v_2+...+0\cdot{}\vec v_n=\vec 0[/mm]

Wenn es aber nur diese triviale Lösung gibt, so nennt man die Vektoren linear unabh.

Gibt es neben der trivialen Lösung eine andere (wo mindestens einer der Koeffizienten in der LK [mm]\neq 0[/mm] ist), so nennt man die Vektoren linear abh.


Die LK ist ja nichts anderes als ein homogenes LGS.

Das ist immer lösbar durch die triviale Lösung.

Wenn es also eindeutig lösbar ist, so ist die triviale Lösung die einzige Lsg. und du hast lin. Unabh.

Gibt's keine eind. Lösung, so hast du lin. Abh.



>  
> Tut mir Leid für die Quälerei.
>  
> MfG

Gruß

schachuzipus


Bezug
                                                
Bezug
Triviale Darstellung und: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Mi 16.02.2011
Autor: sardelka

Jippieee ich hab´s verstanden. VIELEN VIELEN DANK!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de