www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Tschebyscheff-Polynome
Tschebyscheff-Polynome < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff-Polynome: kurze Frage
Status: (Frage) beantwortet Status 
Datum: 14:57 Do 20.04.2006
Autor: Bastiane

Hallo zusammen!

In meinem Buch steht:

"Aus [mm] T_0(x)=1, T_1(x)=x [/mm] und der Rekursionsformel [mm] T_{n+1}(x)=2xT_n(x)-T_{n-1}(x) [/mm] folgt, dass [mm] 2^{n-1} [/mm] der höchste Koeffizient von [mm] T_n(x) [/mm] ist."

Da das hier einfach so als deutscher Satz steht ohne Beweis und so, scheint das nahezu trivial zu sein, oder muss man das beweisen? Jedenfalls habe ich das mal folgendermaßen versucht:

Wenn ich die rekursive Formel mal etwas weiter aufschreiben würde, stände da ja:

[mm] T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)=2x(2xT_{n-1}(x)-T_{n-2}(x))=2x(2x(2xT_{n-2}(x)-T_{n-3}(x)))=...=(2x)^{n}T_1(x)-(2x)^{n-1}T_0(x) [/mm]

(hab' ich mich da jetzt irgendwo verzählt oder so?)

So, aber jetzt würde ich eigentlich sagen, dass [mm] 2^n [/mm] der höchste Koeffizient ist, oder wieso sollte das [mm] 2^{n-1} [/mm] sein? Mmh, irgendwie leuchtet mir das noch nicht so ganz ein. [kopfkratz]

Viele Grüße
Bastiane
[cap]




        
Bezug
Tschebyscheff-Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Do 20.04.2006
Autor: Walde

Hi Bastiane,

>  
> Wenn ich die rekursive Formel mal etwas weiter aufschreiben
> würde, stände da ja:
>  
> [mm]T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)=2x(2xT_{n-1}(x)-T_{n-2}(x))=2x(2x(2xT_{n-2}(x)-T_{n-3}(x)))=...=(2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)[/mm]

Kuck mal: du hast ganz links [mm] T_{n+1}(x) [/mm] stehen und ganz rechts [mm] (2x)^{n}T_1(x)-(2x)^{n-1}T_0(x) [/mm]

das heisst, der höchste Koeffizient von [mm] T_{n+1}(x) [/mm] ist [mm] 2^n, [/mm] dann ist der höchste von [mm] T_n [/mm] (Index um eins veringert) natürlich [mm] 2^{n-1} [/mm] (auch um eins veringert)

>  
> (hab' ich mich da jetzt irgendwo verzählt oder so?)
>  
> So, aber jetzt würde ich eigentlich sagen, dass [mm]2^n[/mm] der
> höchste Koeffizient ist, oder wieso sollte das [mm]2^{n-1}[/mm]
> sein? Mmh, irgendwie leuchtet mir das noch nicht so ganz
> ein. [kopfkratz]

Du hast du den Wald vor Bäumen nicht gesehen ;-)

>  
> Viele Grüße
>  Bastiane
>  [cap]
>  

L G walde  


Bezug
                
Bezug
Tschebyscheff-Polynome: Danke.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Do 20.04.2006
Autor: Bastiane

Hallo Walde!

[mm]T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)=2x(2xT_{n-1}(x)-T_{n-2}(x))=2x(2x(2xT_{n-2}(x)-T_{n-3}(x)))=...=(2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)[/mm]

>  
> Kuck mal: du hast ganz links [mm]T_{n+1}(x)[/mm] stehen und ganz
> rechts [mm](2x)^{n}T_1(x)-(2x)^{n-1}T_0(x)[/mm]
>  
> das heisst, der höchste Koeffizient von [mm]T_{n+1}(x)[/mm] ist [mm]2^n,[/mm]
> dann ist der höchste von [mm]T_n[/mm] (Index um eins veringert)
> natürlich [mm]2^{n-1}[/mm] (auch um eins veringert)

[bonk] - klar :-)
  

> Du hast du den Wald vor Bäumen nicht gesehen ;-)

*g* Das wird's wohl gewesen sein. Bei diesen ganzen Indizes da sehe ich bald wirklich überhaupt nichts mehr. Und Tschebyscheff-Polynome mochte ich noch nie...

Danke für die schnelle Antwort.

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de