www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Turm von Hanoi
Turm von Hanoi < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Turm von Hanoi: Hilfe Tipp Ansatz
Status: (Frage) beantwortet Status 
Datum: 19:30 Mi 20.10.2010
Autor: ella87

Aufgabe
Wir ändern die Regeln des Turms von Hanoi:direkte Übergänge von Stapel 1 zu Stapel 3 und umgekehrt sind nun nicht mehr erlaubt.
(a)Zeichne den Graphen der zum Spiel mit 2 Scheiben gehört.
(b)Zeige, dass das Spiel für jede Anzahl von Scheiben eine Lösung hat, das heißt, dass alle Scheiben von Stapel 1 auf Stapel 3 gebracht werden können.
(c)Wieviele Züge sind nötig für das Spiel mit n Scheiben?

Hallo!

Das Prinzip hab ich verstanden. Den Graph zu (a) auch schon gezeichnet. Ich kann ja mal beschreiben:

man hat quasi eine Pyramide (oder eher ein Dreieck)
                              33
                          *
                     32    ****     31
                                        *
               12                        21
           *        *                        *
         11         13   ****    23   ***     22

und um den Turm von Stapel 1 nach Stapel 3 zu buxieren, muss man alle möglichen (d.h. erlaubten Züge durchlaufen).
"23" heißt übrigens große Scheibe auf Stab 2 und kleine Scheibe auf Stapel 3.

zu (b):
ich versage. Das Prinzip bleibt klar. Für 3 Scheiben kann man auch noch den Graphen zeichnen, aber dann...und wie zeigen? Vermutung: Indution. Problem: wie aufschreiben???

und (c):
Man hat [mm]3^n[/mm] Ecken, also benötigt man [mm]3^n-1[/mm] Züge.

aber die (b)....
Wäre für Hilfe echt Dankbar
(Bemerkung: Indution hatten wir noch nicht in der VL)

        
Bezug
Turm von Hanoi: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 20.10.2010
Autor: abakus


> Wir ändern die Regeln des Turms von Hanoi:direkte
> Übergänge von Stapel 1 zu Stapel 3 und umgekehrt sind nun
> nicht mehr erlaubt.
>  (a)Zeichne den Graphen der zum Spiel mit 2 Scheiben
> gehört.
>  (b)Zeige, dass das Spiel für jede Anzahl von Scheiben
> eine Lösung hat, das heißt, dass alle Scheiben von Stapel
> 1 auf Stapel 3 gebracht werden können.
>  (c)Wieviele Züge sind nötig für das Spiel mit n
> Scheiben?
>  Hallo!
>  
> Das Prinzip hab ich verstanden. Den Graph zu (a) auch schon
> gezeichnet. Ich kann ja mal beschreiben:
>  
> man hat quasi eine Pyramide (oder eher ein Dreieck)
>                                33
>                            *
>                       32    ****     31
>                                          *
>                 12                        21
>             *        *                        *
>           11         13   ****    23   ***     22
>  
> und um den Turm von Stapel 1 nach Stapel 3 zu buxieren,
> muss man alle möglichen (d.h. erlaubten Züge
> durchlaufen).
> "23" heißt übrigens große Scheibe auf Stab 2 und kleine
> Scheibe auf Stapel 3.
>  
> zu (b):
>  ich versage. Das Prinzip bleibt klar. Für 3 Scheiben kann
> man auch noch den Graphen zeichnen, aber dann...und wie
> zeigen? Vermutung: Indution. Problem: wie aufschreiben???
>  
> und (c):
>  Man hat [mm]3^n[/mm] Ecken, also benötigt man [mm]3^n-1[/mm] Züge.
>  
> aber die (b)....
>  Wäre für Hilfe echt Dankbar
>  (Bemerkung: Indution hatten wir noch nicht in der VL)

Hallo,
"früher" haben wir alle (n-1) Scheiben auf dem Mittelplatz "zwischengelagert" um die unterste Scheibe von 1 auf 3 zu legen.
Das (1 auf 3) geht jetzt nicht mehr.
Also muss alles auf 3 zwischengelagert werden, um die große Scheibe von 1 auf 2 zu legen. Dann den Restturm von 3 auf 1 bringen (um auf 3 Platz zu machen für die große Scheibe). Dazu muss die zweitgrößte Scheibe auf 1, aber nicht direkt, sondern mit Zwischenablage auf 2. Damit dort Platz ist, müssen die n-2 kleinsten Scheiben auf 1 zwischengelagert werden....

Wir verallgemeinern:
Die Scheibe mit der Nummer n kann auf ein Nachbarfeld gebracht werden, wenn der Turm mit der Nummer 1 bis n-1 auf das übernächste Feld gebracht werden kann; das ist möglich, wenn man diesen Teilturm erst komplett auf den Nachbarplatz und erst von dortaus auf den Zielplatz umsetzten kann.
Diese unterste (n-1)-Scheibe kann man umsetzten, wenn man den (n-2)-Turm umsetzten kann.
Den kann man umsetzen, wenn man den (n-3)-Turm umsetzten kann,
Den kann man umsetzen, wenn...
...
Den Teilturm aus den zwei kleinsten Scheiben kann man umsetzten, wenn man die oberste Scheibe versetzen kann (und das kann man natürlich).
Da man immer kleine Teiltürme umsetzt und die größeren Scheiben so lange liegen lässt, bis der Turm aus den kleineren Scheiben komplett versetzt ist, gibt es kein Hindernis zum Umsetzten des gesamten Turms.
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de