www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Um(In)quadrate, Um(In)kreis
Um(In)quadrate, Um(In)kreis < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Um(In)quadrate, Um(In)kreis: 6. Klasse Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:32 Fr 28.03.2008
Autor: Paulman

Aufgabe
1.a. Zeichne um jede der unteren Figuren (je ein Quadrat und ein Rechteck) ein Quadrat, und zwar so, dass auf jeder seiner Seiten genau eine Ecke der gegebenen Figur liegt. Sind dabei verschieden große Quadrate möglich?
1.b. Kannst Du in der gleichen weise diese Figuren auch mit Rechtecken die keine Quadrate sind umschreiben?
2. Unten siehst Du einen Kreis, auf dessen Rand ein Punkt A (bei ca. 210°) markiert ist. Er ist eine Ecke eines Rechtecks ABCD, dessen andere Ecken B, C, D ebenfalls auf dem Kreisrand liegen.
2.a. Zeichne ein oder mehrere solche Rechtecke ein, falls das möglich ist und erkläre wie Du das machst.
2.b. Kannst Du auch ein Quadrat mit der Ecke A finden, das genau in den Kreis passt?
3. Erkläre wie man Um- und Inkreis eines Dreiecks findet und welche Anwendungen im Alltag dazu existieren.
4. Erstelle außerdem ein Plakat aus dem gelernt werden kann, was Umquadrate, Umrechtecke, Umkreise, Inrechtecke, Inkreise sind.

Leider ist mein Mathe-LK ca. 25 Jahre her und das Thema nicht mehr sonderlich geläufig. Mein Sohn hat dieses Thema als Ferienarbeit bekommen und irgendwie fehlen mir die Ansatzpunkte. Wo kann ich also was dazu lesen?  Dank Euch für Eure Hilfe.

Gruß


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Um(In)quadrate, Um(In)kreis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Fr 28.03.2008
Autor: abakus


> 1.a. Zeichne um jede der unteren Figuren (je ein Quadrat
> und ein Rechteck) ein Quadrat, und zwar so, dass auf jeder
> seiner Seiten genau eine Ecke der gegebenen Figur liegt.
> Sind dabei verschieden große Quadrate möglich?
>  1.b. Kannst Du in der gleichen weise diese Figuren auch
> mit Rechtecken die keine Quadrate sind umschreiben?
>  2. Unten siehst Du einen Kreis, auf dessen Rand ein Punkt
> A (bei ca. 210°) markiert ist. Er ist eine Ecke eines
> Rechtecks ABCD, dessen andere Ecken B, C, D ebenfalls auf
> dem Kreisrand liegen.
>  2.a. Zeichne ein oder mehrere solche Rechtecke ein, falls
> das möglich ist und erkläre wie Du das machst.
>  2.b. Kannst Du auch ein Quadrat mit der Ecke A finden, das
> genau in den Kreis passt?
>  3. Erkläre wie man Um- und Inkreis eines Dreiecks findet
> und welche Anwendungen im Alltag dazu existieren.
>  4. Erstelle außerdem ein Plakat aus dem gelernt werden
> kann, was Umquadrate, Umrechtecke, Umkreise, Inrechtecke,
> Inkreise sind.
>  Leider ist mein Mathe-LK ca. 25 Jahre her und das Thema
> nicht mehr sonderlich geläufig. Mein Sohn hat dieses Thema
> als Ferienarbeit bekommen und irgendwie fehlen mir die
> Ansatzpunkte. Wo kann ich also was dazu lesen?  Dank Euch
> für Eure Hilfe.
>  
> Gruß
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Hallo,
es ist also bei 1) um ein Quadrat bzw. Rechteck ein Quadrat HERUMZUZEICHNEN.
Da ich auch nicht gleich wusste, wie das geht, habe ich die Aufgabe ersr mal umgekehrt:
Wie kann ich in ein gegebenes Quadrat ABCD ein Rechteck PQRS HINEINZEICHNEN?
Nun, offensichtlich haben die beiden Vierecke einen gemeinsamen "Mittelpunkt" (den jeweiligen Diagonalenschnittpunkt).
In meiner Hilfsaufgabe kann ich wie folgt vorgehen:
Ich zeichne eine beliebige Gerade (irgendwie schräg, aber nicht als Quadratdiagonale) durch M. Sie schneidet zwei gegenüberliegende Quadratseiten in den Punkten P und R. PR ist eine Diagonale meines gesuchten inneren Rechtecks. Jetzt suche ich dessen zweite Diagonale QS. Da die Diagonalen im Rechteck (und damit auch die Diagonalenhälften) gleich lang sind, zeichne ich einen Kreis um M mit dem Radius MP. Die Schnittpunkte dieses Kreises mit den beiden anderen Quadratseiten (es gibt jeweils 2) sind mögliche Eckpunkte des Rechtecks PQRS. Man kann auch so argumentieren (und das ist der eigentliche Grund, warum der Lehrer die Aufgabe gestellt hat): die Winkel bei Q und S sollen rechte Winkel sein. Deshalb liegen sie auf dem THALESKREIS über dem Durchmesser PR.
Kehren wir jetzt die Aufgabe wieder um. Die Seiten des jetzt gezeichneten Rechtecks sind parallel zu den Quadratdiagonalen (da hätte ich auch eher drauf kommen können). Die Quadratdiagonalen sind Symmetrieachsen des Rechtecks. Die Quadratfläche besteht aus dem Flächeninhalt des Rechtecks UND vier gleichschenklig-rechtwinkligen Dreiecken in den vier Quadratecken.
Du musst also nur an eine der Rechteckseiten nach außen ein gleichschenklig-rechtwinkliges Dreieck (mit Hilfe von 45°-Winkeln) antragen, und von dieser äußersten Ecke aus die Figur zu einem Quadrat komplettieren.
1 b) Rechteck um Rechteck ist einfacher: Zeichne eine Gerade, die mit dem Rechteck nur einen  Eckpunkt gemeinsam hat (also nicht durchs Rechteck durchgeht). Eine Parallele dazu verläuft durch den gegenüberliegenden Eckpunkt. Von den anderen beiden Eckpunkten fällt man die Lote auf dieses Parallelenpaar.
Bei 2) ist die Rechtecks- bzw. Quadratdiagonale jeweils der Kreisdurchmesser. Also: von A aus den Durchmesser zeichnen, gegenüberliegender Schnittpunkt ist C. Einen zweiten Durchmesser in beliegiger Lage zeichnen, und du hast B und D (Begründung: Satz des Thales).
Wenn man keinen beliebige, sondern einen spezielle zweiten Durchmesser nimmt, wird das Rechteck sogar zum Quadrat.

3) müsste der Sohnemann selbst hinbekommen.

Viele Grüße
Abakus





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de