www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Umformen eines Terms
Umformen eines Terms < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformen eines Terms: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:40 Di 30.01.2007
Autor: moody

Aufgabe
Bestimme die relativen Hochpunkte und Tiefpunkte von f

a) f(x) = 1/6x³ + 12x²
b)4x³ - 6x² + 9x
[mm] d)x^6 [/mm] + [mm] x^4 [/mm]

Habe zu a) nun:

f'(x) = 0,5x² + 24x

Und nach Umformen kam ich auf:

0 = (x² + 48x + 576)

D = (48/2)² - 24²
D = 0 [Also nur 1 Lösung]

Also x = -24 +/- [mm] \wurzel{0} [/mm]
Also x = -24

Nun habe also -24 - 24 (stand ja noch Hinter der Klammer) also -48

Nun meinte meine Klassenkameradin aber das da auch 0 mitraus kommt, und sie ist leider nun reiten.

Ja aber die Diskrimante 0 sagt mir doch eigentlich schon, das das nicht sein kann, oder?

Wie kann ich heraus finden ob der Hochpunkt ein relatives oder absolutes Maximun darstellt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Umformen eines Terms: Antwort
Status: (Antwort) fertig Status 
Datum: 18:07 Di 30.01.2007
Autor: Zwerglein

Hi, moody,

> Bestimme die relativen Hochpunkte und Tiefpunkte von f
>  
> a) f(x) = 1/6x³ + 12x²

> f'(x) = 0,5x² + 24x
>  
> Und nach Umformen kam ich auf:
>  
> 0 = (x² + 48x + 576)

Wo hast Du denn die 576 her?

[mm] 0,5x^{2} [/mm] + 24x = 0 |* 2

[mm] x^{2} [/mm] + 48x = 0

x*(x + 48) = 0

[mm] x_{1} [/mm] = 0;   [mm] x_{2} [/mm] = -48.

mfG!
Zwerglein

Bezug
                
Bezug
Umformen eines Terms: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:39 Di 30.01.2007
Autor: moody

Nunja, quadratische Ergänzung (binomische Formel) 24²

Aber okay, deine Antwort verstehe ich. Bei einer Umformung wie deiner Kommt man ja immer auf 0. Aber woher weiß ich, das ich besser x ausklammern sollte als das ich z.B. meinen Rechenweg wählen sollte. Ich meine, bei meinem komme ich ja nicht auf 0.

Bezug
                        
Bezug
Umformen eines Terms: Antwort
Status: (Antwort) fertig Status 
Datum: 20:50 Di 30.01.2007
Autor: Zwerglein

Hi, moody,

> Nunja, quadratische Ergänzung (binomische Formel) 24²
>  
> Aber okay, deine Antwort verstehe ich. Bei einer Umformung
> wie deiner Kommt man ja immer auf 0. Aber woher weiß ich,
> das ich besser x ausklammern sollte als das ich z.B. meinen
> Rechenweg wählen sollte. Ich meine, bei meinem komme ich ja
> nicht auf 0.

Dein Rechenweg geht schon auch, aber Du musst's halt richtig machen:

[mm] x^{2} [/mm] + 48x = 0

[mm] x^{2} [/mm] + 48x + [mm] 24^{2} [/mm] = [mm] 24^{2} [/mm]

(x + [mm] 24)^{2} [/mm] = [mm] 24^{2} [/mm]

Nun Wurzel ziehen:

x + 24 = [mm] \pm24 [/mm]

bzw:  x + 24 = 24  [mm] \vee [/mm]  x + 24 = -24
und daher: [mm] x_{1} [/mm] = 0;  [mm] x_{2} [/mm] = -48.

Aber sag' selbst: Was für Umstände!

MERKE: Wenn in einer quadratischen Gleichung die Konstante (also die "Zahl ohne x") fehlt, dann löst man die Gleichung am schnellsten, einfachsten und sichersten durch AUSKLAMMERN.

mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de