www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Umformung
Umformung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Richtig umgeformt?
Status: (Frage) überfällig Status 
Datum: 04:16 Di 27.10.2009
Autor: Druss

unzwar

[mm] E((\bruch{1}{n}\summe_{i=1}^{n}x_{i}-\mu)^{2})) [/mm]

wenn ich nun den bruch und die summe rausziehe quadriert sich beides?
also :

[mm] E(\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{i=1}^{n}(x_{i}-\mu)^{2})) [/mm]

vielen dank im vorraus!

mfg

        
Bezug
Umformung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:31 Di 27.10.2009
Autor: MatthiasKr

Hallo,

> unzwar
>  
> [mm]E((\bruch{1}{n}\summe_{i=1}^{n}x_{i}-\mu)^{2}))[/mm]
>  
> wenn ich nun den bruch und die summe rausziehe quadriert
> sich beides?
>  also :
>  
> [mm]E(\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{i=1}^{n}(x_{i}-\mu)^{2}))[/mm]
>  
> vielen dank im vorraus!
>  
> mfg

bin nicht sicher, ob ich verstehe, was du meinst (bin auch nicht so ein statistik-as). Soll in der ersten zeile sowas stehen wie "E von (arithmetisches mittel - [mm] $\mu$") [/mm] zum quadrat"? wenn ja, wie kommst du dann auf die zweite zeile? du koenntest eine binomische formel anwenden, dann kommt aber was anderes raus...

gruss
matthias

Bezug
                
Bezug
Umformung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:40 Di 27.10.2009
Autor: Druss

[mm] \mu [/mm] ist hierbei der wahre erwartungswert der zufallsvariable also [mm] E(x)=\mu [/mm]

es sei noch erwähnt, dass wir die verteilung des mittels also das areth mittel überprüfen.

Es ist ja so, dass dann die Kovarianz nichts anderes ist als
$ [mm] E((x_{i}-\mu)(x_{i}-\mu)) [/mm] $
es wurde bereits gezeigt, dass [mm] E(x)=\mu [/mm] ist weswegen ich dann um die varianz zu berechnen

[mm] Var(\bruch{1}{n}\summe_{i=1}^{n}x_{i}) [/mm] schreiben kann was ja wiederum nix anderes ist wie schon oben erwähnt

$ [mm] E((\bruch{1}{n}\summe_{i=1}^{n}x_{i}-\mu)^{2})) [/mm] $

Nun wollte ich einfach die Summen und die konstanten aus der summe entfernen um auf eine form der Kovarianz zu kommen.

sprich ziel ist etwas wie

$ [mm] E(\bruch{1}{n^{2}}\summe_{i=1}^{n}\summe_{i=1}^{n}(x_{i}-\mu)(x_{i}-\mu)) [/mm] $

mfg


Bezug
        
Bezug
Umformung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 04:20 Do 29.10.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de