www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Umformung einer Gleichung
Umformung einer Gleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung einer Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:44 Sa 12.08.2006
Autor: Clemens19

Hallo,

Ich habe folgende Gleichung

[mm] \bruch{\summe_{i}^{}\summe_{j \not=i}^{}Q_{ij}w_{i}w_{j}}{\summe_{i}^{}\summe_{j \not=i}^{}w_{i}w_{j}}= \bruch{\alpha^{2}-\beta^{2}}{\gamma^{2}-\beta^{2}} [/mm]

mit [mm] \alpha^{2}=W^{T}QW, \beta^{2}=\summe_{i}^{}w_{i}^{2} [/mm]
[mm] \gamma^{2}=(\summe_{i}^{}w_{i})^{2}, W=(w_{1}...w_{S})^{T} [/mm]
und [mm] Q_{ii}=1 [/mm]
Die Matrix Q ist eine Korrelationsmatrix und mit dieser Formel(also mit der rechten bzw linken Seite der Gleichung) soll die Durchschnittskorrelation der Matrix Q berechnet werden. Der Vektor W beschreibt hierbei die Gewichte der einzelnen Faktoren.
Wie kann durch Umformung der linken Seite auf die rechte Seite kommen?
Ich habe leider keinen blassen Schimmer wie ich hierbei vorgehen muß.
Kann mir von euch jemand helfen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Umformung einer Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 Sa 12.08.2006
Autor: felixf

Hallo Clemens!

> Ich habe folgende Gleichung
>  
> [mm]\bruch{\summe_{i}^{}\summe_{j \not=i}^{}Q_{ij}w_{i}w_{j}}{\summe_{i}^{}\summe_{j \not=i}^{}w_{i}w_{j}}= \bruch{\alpha^{2}-\beta^{2}}{\gamma^{2}-\beta^{2}}[/mm]
>  
> mit [mm]\alpha^{2}=W^{T}QW, \beta^{2}=\summe_{i}^{}w_{i}^{2}[/mm]
>  
> [mm]\gamma^{2}=(\summe_{i}^{}w_{i})^{2}, W=(w_{1}...w_{S})^{T}[/mm]
>  
> und [mm]Q_{ii}=1[/mm]
>  Die Matrix Q ist eine Korrelationsmatrix und mit dieser
> Formel(also mit der rechten bzw linken Seite der Gleichung)

Insbesondere ist also [mm] $Q_{ii} [/mm] = 1$ fuer alle $i$. Das braucht man hier. Du kannst naemlich damit den Bruch auf der linken Seite schreiben als [mm] $\frac{\sum_i \sum_j Q_{ij} w_i w_j - \sum_i Q_{ii} w_i^2}{\sum_i \sum_j w_i w_j - \sum_i w_i^2}$. [/mm] Jetzt steht eigentlich genau die rechte Seite da, wenn du mal die Ausdruecke [mm] $\alpha^2$, $\beta^2$ [/mm] und [mm] $\gamma^2$ [/mm] ausrechnest.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de