www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Umformung von Vektoren
Umformung von Vektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung von Vektoren: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:52 Mo 26.05.2008
Autor: nikito

Aufgabe
Also ich habe hier die Lineare Hülle zweier von [mm] \beta [/mm] abhängigen Vektoren, die umgeformt werden. Wie? Entzieht sich leider meinem Verständnis.

[mm] [\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 },\vektor{0\\\beta\\\beta-1\\0\\1}] [/mm] = [mm] [\vektor{-\bruch{\beta}{2}\\ -1 \\0\\1\\-1 },\vektor{0\\\beta\\\beta-1\\0\\1}] [/mm]  

Der erst Vektor hätte auch gereicht aber der Vollständigkeit halber habe ich sie beide hingeschrieben. Ist mir gänzlich unklar wie diese Umformung von Statten gehen soll.

Vielen Dank für die Hilfe!

        
Bezug
Umformung von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Mo 26.05.2008
Autor: steppenhahn

Ich vermute mal das ganze findet im Körper [mm] \IR [/mm] oder vergleichbarem statt.

Die Lineare Hülle von Vektoren ist ja nichts anderes als die Menge der Linearkombinationen von den Vektoren, d.h. die Menge

[mm] \left[\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 },\vektor{0\\\beta\\\beta-1\\0\\1}\right] [/mm]

= [mm] \left\{\lambda_{1}*\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 } + \lambda_{2}*\vektor{0\\\beta\\\beta-1\\0\\1}\Bigg| \lambda_{1}, \lambda_{2}\in \IR \right\} [/mm]

Nun kannst du dir überlegen, dass das dasselbe ist wie

= [mm] \left\{\lambda_{1}*\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 } + \left(\lambda_{2}-\lambda_{1}\right)*\vektor{0\\\beta\\\beta-1\\0\\1}\Bigg| \lambda_{1}, \lambda_{2}\in \IR \right\} [/mm]

Warum? Die Menge von [mm] \IR [/mm] ist unendlich. D.h. es ist doch völlig egal, ob ich statt [mm] \lambda_{2} [/mm] nun [mm] \lambda_{2}-\lambda_{1} [/mm] schreibe oder [mm] \lambda_{2}, [/mm] denn beide Skalare sind auf jeden Fall in [mm] \IR [/mm] enthalten. Außerdem kann ich immer noch beide Skalare vor den Vektoren frei wählen - ich muss einfach zuerst [mm] \lambda_{1} [/mm] wählen und dann [mm] \lambda_{2} [/mm] entsprechend so, dass [mm] \lambda_{2}-\lambda_{1} [/mm] den gewünschten Wert hat.

--> Ich verändere die Menge also nicht, denn ich kann immer noch alle Elemente [mm] \in \IR [/mm] als Skalare vor den Vektoren einsetzen, genau wie vorher.

Wöllte ich mein "altes" Skalar vor dem zweiten Vektor wiederhaben, müsste ich mein [mm] \lambda_{2} [/mm] einfach [mm] \lambda_{2}+\lambda_{1} [/mm] wählen.

Das ist sehr schwer zu verstehen, aber glaub mir, wenn du es verstanden hast, hast du ein großes Stück Erkenntnis der Mathematik dazugewonnen (finde ich zumindest)!

Wenn ich die Menge nun so oben stehen habe, kann ich sie auch umformen:

[mm] \left\{\lambda_{1}*\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 } + \left(\lambda_{2}-\lambda_{1}\right)*\vektor{0\\\beta\\\beta-1\\0\\1}\Bigg| \lambda_{1}, \lambda_{2}\in \IR \right\} [/mm]

= [mm] \left\{\lambda_{1}*\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 } + \lambda_{2}*\vektor{0\\\beta\\\beta-1\\0\\1}-\lambda_{1}*\vektor{0\\\beta\\\beta-1\\0\\1}\Bigg| \lambda_{1}, \lambda_{2}\in \IR \right\} [/mm]

Der Rest ergibt sich entsprechend:

= [mm] \left\{\lambda_{1}*\left(\vektor{-\bruch{\beta}{2}\\ \beta-1 \\\beta-1\\1\\0 } - \vektor{0\\\beta\\\beta-1\\0\\1}\right) + \lambda_{2}*\vektor{0\\\beta\\\beta-1\\0\\1}\Bigg| \lambda_{1}, \lambda_{2}\in \IR \right\} [/mm]

= [mm] \left\{\lambda_{1}*\vektor{-\bruch{\beta}{2}\\ -1 \\ 0\\1\\-1 } + \lambda_{2}*\vektor{0\\\beta\\\beta-1\\0\\1}\Bigg| \lambda_{1}, \lambda_{2}\in \IR \right\} [/mm]

[mm] =\left[\vektor{-\bruch{\beta}{2}\\ -1 \\ 0\\1\\-1 },\vektor{0\\\beta\\\beta-1\\0\\1}\right] [/mm]

Im Prinzip wurde also nur in der linearen Hülle der zweite Vektor vom ersten einmal abgezogen.

Man verwendet solche Umformungen, um das Ganze möglichst schöner aussehen zu lassen. (Bei dir sind durch z.B. zwei Betas weggefallen).

Bezug
                
Bezug
Umformung von Vektoren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:19 Mo 26.05.2008
Autor: nikito

Ah ja danke! Also das mit den Skalaren etc. war mir schon klar mir fehlte nur der Gedanke das man ja den zweiten vom ersten abziehen könnte. Da bin ich leider nicht drauf gekommen. Wilde Sache das ;)

Vielen Dank noch mal.

Lg Nikito

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de