www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Umgebung um den Fixpunkt
Umgebung um den Fixpunkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umgebung um den Fixpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Do 31.03.2011
Autor: Nadia..

Aufgabe
Zeigen Sie, dass es ein [mm] $\epsilon [/mm] > 0$ und eine [mm] $C^1$-Funktion [/mm] $f:] [mm] 1-\epsilon [/mm] , 1+ [mm] \epsilon[ \to [/mm] R$ gibt mit $f(1) = 1$ und [mm] $x^{f(x)} [/mm] = [mm] f(x)^x$ [/mm] für alle $ x [mm] \in [/mm] ] [mm] 1-\epsilon [/mm] , 1+ [mm] \epsilon[$ [/mm]

Meine Idee

sei $f $ stetig
[mm] $\Rightarrow [/mm] $ für
[mm] $\lim_{n\to \infty}x_n \to [/mm] 1 [mm] \Rightarrow \lim_{n \to \infty}f(x_n) \to [/mm] f(1) = 1$

dann gilt
$ [mm] \lim_{n \to \infty} x_n^{f(x_n)} [/mm] = [mm] \lim_{n \to \infty} f(x_n)^{x_n} [/mm] = 1$

Das ist aber der Grenzwert, ich muss es für ein $ x [mm] \in [/mm] ] [mm] 1-\epsilon [/mm] , 1+ [mm] \epsilon[$ [/mm] zeigen.

Jetzt habe ich einfach gedacht, sei $ [mm] n_0>N \in \mathbb{N} [/mm] $,sodass $ [mm] \frac{1}{n_0}>\frac{1}{\epsilon}$, [/mm] dann gilt für

$ [mm] n_1>n_0 ,\, \, x_{n_1}^{f(x_n_1)} [/mm] = [mm] f(x_n_1)^{x_n_1} [/mm] $

Ich weiß, ich habe viel Salat da oben stehen, kann mir jemand helfen ?


Lg

Nadia

        
Bezug
Umgebung um den Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 07:41 Fr 01.04.2011
Autor: rainerS

Hallo Nadia!

> Zeigen Sie, dass es ein [mm]\epsilon > 0[/mm] und eine [mm]C^1[/mm]-Funktion
> [mm]f:] 1-\epsilon , 1+ \epsilon[ \to R[/mm] gibt mit [mm]f(1) = 1[/mm] und
> [mm]x^{f(x)} = f(x)^x[/mm] für alle [mm]x \in ] 1-\epsilon , 1+ \epsilon[[/mm]
>  
> Meine Idee
>  
> sei [mm]f[/mm] stetig

Hmm, das Problem ist, dass du erst einmal die Existenz einer solchen Funktion f zeigen musst, bevor du über ihre Stetigkeit reden kannst.

> [mm]\Rightarrow[/mm] für
> [mm]\lim_{n\to \infty}x_n \to 1 \Rightarrow \lim_{n \to \infty}f(x_n) \to f(1) = 1[/mm]
>  
> dann gilt
> [mm]\lim_{n \to \infty} x_n^{f(x_n)} = \lim_{n \to \infty} f(x_n)^{x_n} = 1[/mm]
>  
> Das ist aber der Grenzwert, ich muss es für ein [mm]x \in ] 1-\epsilon , 1+ \epsilon[[/mm]
> zeigen.
>  
> Jetzt habe ich einfach gedacht, sei [mm]n_0>N \in \mathbb{N} [/mm],sodass
> [mm]\frac{1}{n_0}>\frac{1}{\epsilon}[/mm], dann gilt für
>  
> [mm]n_1>n_0 ,\, \, x_{n_1}^{f(x_n_1)} = f(x_n_1)^{x_n_1}[/mm]
>  
> Ich weiß, ich habe viel Salat da oben stehen, kann mir
> jemand helfen ?

Tipp: Wende den Satz von der impliziten Funktion an.

Viele Grüße
   Rainer

Bezug
                
Bezug
Umgebung um den Fixpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Fr 01.04.2011
Autor: Nadia..

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Danke !! noch einen Versuch,


Sei $F(x,f(x)) = x^{f(x)} - f(x)^x $ nach Voraussetzung, gilt $F(1,f(1)) =  1^{f(1)} - f(1)^1 = 0 $
Nun untersuche $\frac{\partial F}{\partial y} (1,1)}\neq 0 \Rightarrow  $
mit dem Satz der I.F eine Umgebung $v_\epsilon$ um 1, sodass gilt $F(x,f(x) = x^{f(x)} - f(x)^x =0 \forall x \in \vepsilon $


Richtig?


Lg

Nadia


Bezug
                        
Bezug
Umgebung um den Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Fr 01.04.2011
Autor: fred97


> Danke !! noch einen Versuch,
>  
>
> Sei [mm]F(x,f(x)) = x^{f(x)} - f(x)^x[/mm] nach Voraussetzung, gilt
> [mm]F(1,f(1)) = 1^{f(1)} - f(1)^1 = 0[/mm]
> Nun untersuche [mm]\frac{\partial F}{\partial y} (1,1)}\neq 0 \Rightarrow [/mm]
>  
> mit dem Satz der I.F eine Umgebung [mm]v_\epsilon[/mm] um 1, sodass
> gilt [mm]F(x,f(x) = x^{f(x)} - f(x)^x =0 \forall x \in \vepsilon[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>
>
> Richtig?

Nein.

Es muß Dir doch auffallen, dass Du mit  "  .....Sei $ F(x,f(x)) = x^{f(x)} - f(x)^x $......." die Funktion f schon verwendest, aber deren Existenz sollst Du doch zeigen !!

Setze $F(x,y):=x^y-y^x$  für x,y>0. Zeige:

1. F(1,1)=0.

2. $ \frac{\partial F}{\partial y} (1,1)}\neq 0 $

Dann folgt aus dem Satz über implizit definierte Funktionen:

Es gibt ein \epsilon > 0 und genau eine stetig differenzierbare Funktion $ f:] 1-\epsilon , 1+ \epsilon[ \to \IR $ mit

    f(1)=1 und F(x,f(x))=0  für alle $ x \in ] 1-\epsilon , 1+ \epsilon[ $

FRED

>  
>
> Lg
>  
> Nadia
>    


Bezug
                                
Bezug
Umgebung um den Fixpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:05 Fr 01.04.2011
Autor: Nadia..

Ja genau :) , das wollte ich eigentlich auch machen.


Sei
$ F(x,y) =  [mm] x^y- y^x [/mm] $
Es gilt für  F(1,1) = 0.

Für $ [mm] \frac{\partial F}{\partial y} [/mm] =  [mm] (x^y)*log(x)- y^{x-1} \Rightarrow \frac{\partial F}{\partial y}(1,1) [/mm] =  [mm] (1^1)*log(1)- 1^{1-1} [/mm]  = 1 [mm] \neq [/mm] 0 $

Und mit dem Satz über implizit Funktionen folgt die Behauptung.


Richtig?

Lg

Nadia




Bezug
                                        
Bezug
Umgebung um den Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 10:08 Fr 01.04.2011
Autor: fred97


> Ja genau :) , das wollte ich eigentlich auch machen.
>  
>
> Sei
> [mm]F(x,y) = x^y- y^x[/mm]
>  Es gilt für  F(1,1) = 0.
>
> Für [mm]\frac{\partial F}{\partial y} = (x^y)*log(x)- y^{x-1} \Rightarrow \frac{\partial F}{\partial y}(1,1) = (1^1)*log(1)- 1^{1-1} = 1 \neq 0[/mm]

Die Ableitung von [mm] y^x [/mm] stimmt nicht und Du hast einen Vorzeichenfehler

FRED

>  
> Und mit dem Satz über implizit Funktionen folgt die
> Behauptung.
>  
>
> Richtig?
>
> Lg
>  
> Nadia
>  
>
>  


Bezug
                                                
Bezug
Umgebung um den Fixpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Fr 01.04.2011
Autor: Nadia..

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de