www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Umgebung von x
Umgebung von x < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umgebung von x: Tipp
Status: (Frage) beantwortet Status 
Datum: 21:41 Do 11.02.2010
Autor: DasTinchen

Aufgabe
Die Funktion [mm] f:\IR \to \IR [/mm] sei stetig und es gelte f(x)>0 für ein x [mm] \in \IR. [/mm] Zeigen Sie, dass eine Umgebung U von x existiert mit f(y)>0 für alle y [mm] \in [/mm] U.

Ein Problem gelöst und schon warten neue :)

Vorneweg... mir ist bekannt was eine Umgebung ist.
was mich jedoch irritiert ist der teil mit f(y)>0.

kann ich denn dann einfach sagen,...

...da sowohl f(x) als auch f(y) größer 0 sind (nach Vorraussetzung) gilt auch x>0 und y>0.
Daraus folgt dann [mm] U_{\varepsilon}(x) [/mm] = [mm] (x-\varepsilon, x+\varepsilon) [/mm] ={ [mm] y\in [/mm] U [mm] :|x-y|<\varepsilon [/mm] }

bin mir nicht wirklich sicher ob das sinn macht...

bitte bitte hilfe

lg
tinchen

        
Bezug
Umgebung von x: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Do 11.02.2010
Autor: gfm

Wenn eine Funktion stetig in einem Punkt ist, so gibt es zu jeder Umgebung um den Funktionswert herum eine um den Punkt herum, so daß diese Umgebung um den Punkt herum in die Umgebung um den Funktionswert abgebildet wird.

Wenn also f bei x mit f(x)>0 stetig ist, so gibt es eine Umgebung um f(x), die die null nicht enthält und eine Umgebung um x herum, die in die Umgebung um f(x) herum abgebildet wird.


Bezug
        
Bezug
Umgebung von x: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Do 11.02.2010
Autor: tobit09

Hallo tinchen,

> ...da sowohl f(x) als auch f(y) größer 0 sind (nach
> Vorraussetzung)

Nein, ein U mit $f(y)>0$ für alle [mm] $y\in [/mm] U$ ist gerade gesucht, nicht gegeben.

> gilt auch x>0 und y>0.

Nein. Warum soll nicht z.B. f(-5)=7 gelten? Aus f(x) folgt in keinster Weise x>0.

>  Daraus folgt dann [mm]U_{\varepsilon}(x)[/mm] = [mm](x-\varepsilon, x+\varepsilon)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


Das ist die Definition von $U_{\varepsilon}(x)$. Sie gilt unabhängig von den vorherigen Überlegungen.

> $=\{$ [mm]y\in[/mm] U [mm]:|x-y|<\varepsilon[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$\}$
Wenn du das U durch $\IR$ ersetzt, stimmt es auf jeden Fall. Ansonsten müsstest du zunächst erklären, was U sein soll.

Mit welcher Definition/Charakterisierung von Stetigkeit möchtest du gerne arbeiten?

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de