www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Umkehrabbildung
Umkehrabbildung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrabbildung: Frage ?
Status: (Frage) beantwortet Status 
Datum: 20:00 So 17.12.2006
Autor: Mathmark

Hallo erstmal !!!!

Habe folgende Frage in einem anderen Forum gestellt, aber keine Antwort erhalten:

Sei [mm]C:\mathbb{N}\times\mathbb{N}\to \mathbb{N}[/mm] mit [mm](m,n)\mapsto 2^m(2n+1)[/mm] gegeben.

Zeigen Sie:
1) [mm]C[/mm] ist bijektiv
2) Existiert eine Umkehrabbildung ? Wenn ja, welche ?


So.....zu 1) hab ich die Lösung hinbekommen, was ist aber mit 2) ? Da sie bijektiv ist, existiert eine Umkehrabbildung, aber wie schaut diese aus ?
Ich hab echt keine Idee......
Kann mir einer Helfen....oder einen Tip zu geeigneter Lektüre für dieses Problem liefern ?

Wäre echt Dankbar...Gruß

Mathmark

        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:31 Mo 18.12.2006
Autor: angela.h.b.


> Hallo erstmal !!!!
>  
> Habe folgende Frage in einem anderen Forum gestellt, aber
> keine Antwort erhalten:
>  
> Sei [mm]C:\mathbb{N}\times\mathbb{N}\to \mathbb{N}[/mm] mit
> [mm](m,n)\mapsto 2^m(2n+1)[/mm] gegeben.
>  
> Zeigen Sie:
>  1) [mm]C[/mm] ist bijektiv

Hallo,

das klappt aber nur, wenn 0 [mm] \in \IN. [/mm]

>  2) Existiert eine Umkehrabbildung ? Wenn ja, welche ?

Die Umkehrabbildung [mm] C^{-1} [/mm] geht von [mm] \IN [/mm] ---> [mm] \IN^2. [/mm]

Erkläre [mm] C^{-1} [/mm] für gerade und ungerade Zahlen getrennt.

k ungerade. Dann gibt es k' mit [mm] k=2k'+1=2^0(2k'+1), [/mm] was Dir [mm] C^{-1}(k):=... [/mm] recht nahelegen sollte.

Für k gerade überlege Dir, daß es k' und k'' gibt mit [mm] k=2^k'(2k''+1) [/mm]  . Da bietet es sih an für gerade k [mm] C^{-1}(k):=... [/mm] zu definieren.

Gruß v. Angela

Bezug
                
Bezug
Umkehrabbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Mo 18.12.2006
Autor: Mathmark

Danke erstmal für deine Antwort !

Aber das Problem besteht ja gerade darin, die Umkehrabbildung als ganzes zu betrachten.
Außerdem denke ich, dass man im Falle [mm]k[/mm] gerade wieder vor dem ursprüglichen Problem steht, da [mm]k[/mm] ja dann von [mm]k'[/mm] und [mm]k''[/mm] abhängt.
Entschuldigen möchte ich mich auch für die schwammige Definition.....selbstverständlich gehört die Null dazu. ;-)

Was hälst du von dieser Vermutung:

Sei [mm]C[/mm] wie oben gegeben (mit Null) und sei [mm]k=C(m,n)[/mm] sowie [mm]p=\mbox{max}\{m\in\mathbb{N}:2^m|k\}[/mm] und [mm]q=\mbox{max}\{n\in\mathbb{N}:(2n+1)|k\}[/mm].
Also wäre demnach:
[mm]C^{-1}(k)=(p,q)[/mm]

Bis ich das rausgefunden habe, bin ich fast verzweifelt........mit dem Manko, dass diese Umkehrabbildung kein explizites Ergebnis ist.
Also [mm]k[/mm] ist nicht eindeutig zerlegt.

Geht's vielleicht doch anders ?

Gruß Mathmark

Bezug
                        
Bezug
Umkehrabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 Mo 18.12.2006
Autor: angela.h.b.


>
> Aber das Problem besteht ja gerade darin, die
> Umkehrabbildung als ganzes zu betrachten.

Ich weiß nicht genau, was Du meinst. Störtst Du Dich daran, eine Funktion elementweise zu definieren?
DAS ist kein Problem.

So etwas

[mm] f(n)=\begin{cases} 0, & \mbox{für } n \mbox{ gerade} \\ 1, & \mbox{für } n \mbox{ ungerade} \end{cases} [/mm]

gibt's ja häufig.



>  Außerdem denke ich, dass man im Falle [mm]k[/mm] gerade wieder vor
> dem ursprüglichen Problem steht, da [mm]k[/mm] ja dann von [mm]k'[/mm] und
> [mm]k''[/mm] abhängt.

Nein, k hängt nicht von k' und k'' ab.
Das k wird ja vorgegeben, und k' und k'' müssen zu diesem k passen.

Die Zerlegung in eine Potenz von zwei und eine ungerade Zahl ist eindeutig, was man leicht zeigen kann, und Grund dafür, daß man die Funktion so definieren kann, wie ich es getan habe.

Man kann es ohne Fallunterscheidung auch so machen

[mm] C^{-1}(k)=(k',k'') [/mm]    mit [mm] k=2^{k'}(2k''+1) [/mm]

Für die Wohldefiniertheit müßte man dann zeigen, daß diese Darstellung eindeutig ist.

Deine Definition geht ja in dieselbe Richtung, und sie geht meiner Meinung nach genausogut - wenn auch sie nicht so recht nach meinem Geschmack ist.
Damit sie sinnvoll ist, mußt Du sichern, daß Du nicht das Maximum leerer Mengen suchst. (Nun, das ist einfach: [mm] 2^0 [/mm] und (2*0+1) teilen jede natürliche Zahl.)

> Sei [mm]C[/mm] wie oben gegeben (mit Null) und sei [mm]k=C(m,n)[/mm] sowie
> [mm]p=\mbox{max}\{m\in\mathbb{N}:2^m|k\}[/mm] und
> [mm]q=\mbox{max}\{n\in\mathbb{N}:(2n+1)|k\}[/mm].
>  Also wäre demnach:
>  [mm]C^{-1}(k)=(p,q)[/mm]

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de