www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Umkehrbarkeit
Umkehrbarkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrbarkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:00 Do 20.06.2013
Autor: kaykay_22

Aufgabe
(i)
Zeigen Sie, dass die Abbildung $ f: [mm] D=(0,\infty) \times \IR^{2} \to \IR^{3} [/mm] $, gegeben durch
$ f(x,y,z)= $ [mm] \vektor{x cos(z) sin(y)\\ x sin(z) sin(y) \\ x cos(y) } [/mm]
in jedem Punkt ihres Definitionsbereiches lokal umkehrbar ist.
(ii)
Zeigen Sie, dass f nicht global umkehrbar ist.

Hallo,

komme bei dieser Aufgabe leider nicht weiter. Lokale Umkehrbarkeit bei der (i) will ich eigentlich zeigen, indem ich zeige, dass die Determinante der Jakobi Matrix immer größer Null ist. Ist dieser Ansatz richtig?
Habe es auf jeden Fall so probiert, und konnte es auch durch Ausklammern vereinfachern, jedoch gibt mir mein Term keinen Aufschluss über pos oder neg.

Wäre über jede Hilfe dankbar.
Gruss

        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Do 20.06.2013
Autor: schachuzipus

Hallo kaykay_22,


> (i)
> Zeigen Sie, dass die Abbildung [mm]f: D=(0,\infty) \times \IR^{2} \to \IR^{3} [/mm],
> gegeben durch
> [mm]f(x,y,z)=[/mm] [mm]\vektor{x cos(z) sin(y)\\ x sin(z) sin(y) \\ x cos(y) }[/mm]

>

> in jedem Punkt ihres Definitionsbereiches lokal umkehrbar
> ist.
> (ii)
> Zeigen Sie, dass f nicht global umkehrbar ist.
> Hallo,

>

> komme bei dieser Aufgabe leider nicht weiter. Lokale
> Umkehrbarkeit bei der (i) will ich eigentlich zeigen, indem
> ich zeige, dass die Determinante der Jakobi Matrix immer
> größer Null ist. Ist dieser Ansatz richtig?

Jo, zumindest sollte die [mm] $\neq [/mm] 0$ sein ...

> Habe es auf jeden Fall so probiert, und konnte es auch
> durch Ausklammern vereinfachern, jedoch gibt mir mein Term
> keinen Aufschluss über pos oder neg.

Dann zeige mal deine Rechnung dazu ...

Der trigonometrische Pythagoras ist doch sehr hilfreich hier ...

>

> Wäre über jede Hilfe dankbar.
> Gruss

LG

schachuzipus

Bezug
                
Bezug
Umkehrbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Do 20.06.2013
Autor: kaykay_22

Ich habe für die Determinante raus:

[mm] det(J_{f})= x^{2} [/mm] sin(y) [mm] (cos^{2}(z)cos^{2}(y)+sin^{2}(z)sin^{2}(y)) [/mm]

Klar der lange Teil in der Klammer ist größer(gleich?) Null... aber davor die einzelne Sinusfunktion passt mir halt irgendwie überhaupt nicht. Habe ich vielleicht ein Rechenfehler drin?

Bezug
                        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 20.06.2013
Autor: schachuzipus

Hallo nochmal,


> Ich habe für die Determinante raus:

>

> [mm]det(J_{f})= x^{2}[/mm] sin(y)
> [mm](cos^{2}(z)cos^{2}(y)+sin^{2}(z)sin^{2}(y))[/mm]

Es ist [mm]\operatorname{det}(J_f)=x^2\cdot{}\sin(y)[/mm]

Wenn du in der Entwicklung nach Sarrus in der entstehenden Summe [mm]x^2\cdot{}\sin(y)[/mm] ausklammerst und dann in der Klammer einmal [mm]\cos^2(z)[/mm] und zum anderen [mm]\sin^2(z)[/mm] ausklammerst, siehst du, dass in der Klammer eigentlich eine 1 steht ...

>

> Klar der lange Teil in der Klammer ist größer(gleich?)
> Null... aber davor die einzelne Sinusfunktion passt mir
> halt irgendwie überhaupt nicht. Habe ich vielleicht ein
> Rechenfehler drin?

Wie sollen wir das sagen können, wenn du uns deine Rechnung vorenthältst?

Gruß

schachuzipus

Bezug
                                
Bezug
Umkehrbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 Do 20.06.2013
Autor: kaykay_22


>  
> Es ist [mm]\operatorname{det}(J_f)=x^2\cdot{}\sin(y)[/mm]
>  

Vielen Dank, dass du dir die Mühe gemacht hast.
Mein Problem ist jetzt eben: Ich soll die Umkehrbarkeit zeigen. Jetzt steht da aber sin(y)... Das kann auch Null werden?! Und genau das soll doch für die Umkehrbeit nicht sein?



Bezug
                                        
Bezug
Umkehrbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Do 20.06.2013
Autor: schachuzipus

Hallo nochmal,

> >
> > Es ist [mm]\operatorname{det}(J_f)=x^2\cdot{}\sin(y)[/mm]
> >

>

> Vielen Dank, dass du dir die Mühe gemacht hast.
> Mein Problem ist jetzt eben: Ich soll die Umkehrbarkeit
> zeigen. Jetzt steht da aber sin(y)... Das kann auch Null
> werden?!

Jo!

> Und genau das soll doch für die Umkehrbeit nicht
> sein?

In dem von dir angegebenen Definitionsbereich (für $y$ ist das [mm] $\IR$) [/mm] ist die Jakobidet. nicht immer [mm] $\neq [/mm] 0$

Man sollte den Definitionsbereich geeignet einschränken.

Schaue dir mal im Netz oder wo auch immer was an zu "Kugelkoordinaten und Umkehrbarkeit"

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de