www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Umkehrf. ableiten
Umkehrf. ableiten < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrf. ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Do 21.05.2009
Autor: AbraxasRishi

Hallo!

Ich wollte fragen, warum die Ableitungs-Regel für Umkehrf. nur für streng monotone Funktionen gilt... Ist es deshalb:Im Beweis steht außerdem das wenn f im Punkt x diffbar. ist auch [mm] f^{-1} [/mm] im Punkt y=f(x) diffbar. ist wenn [mm] f'(x)\not=0. [/mm]

Die beiden Sachen hängen zusammen oder? Bei streng monotonen F. ist doch nie f'(x)=0...

Ich habe zwar schon eine Ahnung, aber könnte mir noch jemand bestätigen warum die Stetigkeit vorausgesetzt wird?

Vielen Dank schonmal!

Gruß

Rishi






        
Bezug
Umkehrf. ableiten: Idee
Status: (Antwort) fertig Status 
Datum: 19:56 Do 21.05.2009
Autor: weightgainer

Hallo Angelika,

verwechsle nicht die Begriffe "Stetigkeit" und "Monoton wachsend/fallend". Umgangssprachlich sagt man zwar, etwas wachse stetig an, aber in der Mathematik klingt das gruselig.
Nun zur Frage:
Es geht bei dieser Einschränkung weniger um die Ableitung, sondern darum, dass du zu nicht streng monotonen Funktionen nicht so einfach eine Umkehrfunktion angeben kannst. Das kann man sich recht leicht vorstellen: wenn du dir einen Funktionsgraph vorstellst wie die Parabel, dann bedeutet die Umkehrung ja grafisch eine Spiegelung an der Winkelhalbierenden oder noch einfacher: du drehst dein Blatt um 90°. Du siehst sofort, dass der so entstehende Graph kein Funktionsgraph mehr ist.
Eine solche zu der Parabel gehörige quadratische Funktion kannst du entsprechend nur dann umkehren, wenn du sie auf einen der beiden Äste einschränkst.
Wenn du dir das jetzt als Prinzip überlegst, also: wie muss mein Graph verlaufen, damit es beim 90° drehen immer noch ein Funktionsgraph ist, stellst du schnell fest, dass das nur bei den streng monotonen funktioniert.

Ich hoffe, dieser (mathematisch nicht ganz exakt formulierte) Beitrag hilft dir beim Verständnis.
Gruß,
weightgainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de