www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Umkehrfunktion
Umkehrfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Was bedeutet Umkehrfunktion ?
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 26.01.2012
Autor: Fee

Hallo !

Ich frage mich, ob ich die Umkehrfunktion auch richtig verstanden habe :

Die Funktion y=x ist umkehrbar wenn nur ein x-Wert einem y-Wert zugeordnet ist.

Aber woran erkannt man, dass eine Funktion umkehrbar ist? Und warum sind streng monotone Funktionen auf jeden Fall umkehrbar ?

Ich danke euch !

Eure liebe Fee

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Do 26.01.2012
Autor: Diophant

Hallo,

ich gehe mal von einem Kenntnisstand aus, der den in deinem Profil hinterlegten Infos entspricht (die Thematik ist kopmplizierter, als sie in der Schule dargestellt wird).

Eine Umkehrfunktion ordnet jedem y aus dem Wertebereich einer Funktion f auf eindeutige Art und Weise einen x-Wert zu, so dass y=f(x) gilt.

Dazu muss die Funktion jeden Wert ihres Wertebereichs auch annehmen. Man nennt diese Eigenschaft auch Surjektivität, im Rahmen der Schulmathematik ist sie i.d.R. gegeben, da man den Wertebereich grundsätzlich auf diejenigen y-Werte einschränmkt, die eine Funktion f auch tatsächlich annimmt.

Weiter kann man dem Wortteil Funktion in Umkehrfunktion entnehmen, dass sie, wie jede Funktion, eindeutig sein muss. Es darf also immer nur genau ein solches x aus dem Definitionsbereich geben, so dass y=f(x). Mit anderen Worten: für die Funktion f muss gelten, dass sie für zwei unterschiedliche x-Werte auch unterschiedliche Funktionswerte annehmen muss. Diese Eigenschaft nennt man auch Injektivität.

Eine Funktion, die diese beiden Eigenschaft hat, die also injektiv und surjektiv ist, nennt man bijektiv, und es gilt der

Satz: jede bijektive Funktion ist umkehrbar

Machen wir uns anschaulich klar, was dies für die Schulmathematik bedeutet: dort werden so gut wie ausschließlich stetige Funktionen betrachtet. Deren Schaubild kannst du zeichnen, ohne den Stift abzusetzen. Mache dir jetzt klar, dass bei einer solchen Funktion, wenn sie nicht streng monoton wäre, manche y-Werte mehrfach vorkommen müssen. Damit wäre eine solche Funktion nicht injektiv und somit insbesondere nicht umkehrbar.

Ich habe jetzt bewusst einen Kauderwelsch aus anschaulichen und exakten Formulierungen verwendet. Aber deine Frage zeigt eben auf interessante Art und Weise, wie unzulänglich doch die in der Schule verwendeten 'rein anschaulichen' Erklärungen mancher Begriffe sind, weil sie mehr verwirren als klären.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de