www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Umkehrfunktion bilden
Umkehrfunktion bilden < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Mo 08.11.2010
Autor: Clawfinger

Aufgabe
Bilden Sie die Umkehrfunktion von [mm] ln(x^{2}-1) [/mm] = 5y und skizzieren Sie sie in einem Koordinatensystem mit Hilfe einer Wertetabelle.

Hey
Also ich soll aus der angegebenen Funktion die Umkehrfunktion bilden, das heißt also nach x auflösen? Ich habe nur keine Ahnung, wie ich das anstellen soll. Soweit ich weiß, wird bei der Umkehrfunktion aus dem Logarhitmus ja die Exponentialfunktion gemacht. Nur wie würde das dann aussehen? Würde daraus [mm] e^{x^{2}-1} [/mm] = 5y werden? Nur wie bekomme ich dann aus der Exponentialfunktion das x so, dass es alleine auf einer Seite der Gleichung steht? Oder macht man das ganz anders?

        
Bezug
Umkehrfunktion bilden: Hinweise
Status: (Antwort) fertig Status 
Datum: 10:55 Mo 08.11.2010
Autor: Roadrunner

Hallo Clawfinger!


Die Idee mit dem "e hoch" ist doch sehr gut. Jedoch musst Du das auf beiden Seiten der Gleichung anwenden.

Und links wird dadurch genau der Logarithmus eliminiert.

Man erhält also:

[mm] $x^2-1 [/mm] \ = \ [mm] e^{5y}$ [/mm]


Gruß vom
Roadrunner


Bezug
                
Bezug
Umkehrfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Mo 08.11.2010
Autor: Clawfinger

Aufgabe
Bilden Sie die Umkehrfunktion von f(x) = [mm] \bruch{4x^{2}-12x+9}{4x-6} [/mm]

Ah, okay. Danke für deine Hilfe.
Ich habe dann jetzt daraus x = [mm] \wurzel{e^{5y}+1} [/mm] gemacht. Stimmt das dann so?

Ich habe dann noch eine zweite Funktion mit der ich genau das selbe machen soll. Steht in der Aufgabenstellung oben. Folgende Teilschritte habe ich gemacht:

y = [mm] \bruch{4x^{2}-12x+9}{4x-6} [/mm] | * 4x - 6
4xy - 6y = [mm] 4x^{2}-12x+9 [/mm] | [mm] -4x^{2}-12x-9 [/mm]
0 = [mm] -4x^{2}-12x+4xy-6y-9 [/mm]

Ich bin an die Aufgabe eigentlich so herangegangen, dass ich die pq-Formel dann anwenden wollte. Am Ende kann ich das aber dann leider doch nicht. Ein anderer Weg das zu lösen fällt mir aber auch nicht ein. Kann mir da wieder jemand einen Tipp geben?
Danke!

Bezug
                        
Bezug
Umkehrfunktion bilden: Korrekturen
Status: (Antwort) fertig Status 
Datum: 14:06 Mo 08.11.2010
Autor: Roadrunner

Hallo Clawfinger!


>  Ich habe dann jetzt daraus x = [mm]\wurzel{e^{5y}+1}[/mm] gemacht.
> Stimmt das dann so?

Bedenke, dass es $x \ = \ [mm] \red{\pm} [/mm] \ [mm] \wurzel{...}$ [/mm] lauten muss.


Und: in Zukunft neue Aufgaben bitte in einem neuen Thread.


> Ich habe dann noch eine zweite Funktion mit der ich genau
> das selbe machen soll. Steht in der Aufgabenstellung oben.
> Folgende Teilschritte habe ich gemacht:
>  
> y = [mm]\bruch{4x^{2}-12x+9}{4x-6}[/mm] | * 4x - 6

Kann man so machen, ist aber zu kompliziert.

Wende im Zähler eine binomische Formel an und klammere im Nenner 2 aus.

Dann kannst Du hier drastisch vereinfachen.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de