www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Umkehrfunktion und Integral
Umkehrfunktion und Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion und Integral: Flächenberechnung
Status: (Frage) beantwortet Status 
Datum: 12:10 So 05.11.2006
Autor: DonLorenzo

Aufgabe
g:x -> [mm] -1/5x^2 [/mm] + 8/5x  D= [mm] ]-\infty [/mm] ; 4]

Kennzeichnen Sie den Graphen von g
b.) Bestimmen Sie den Term der Umkehrfunktion zu g.

Zeichnen Sie den Grraphen der Umkehrfunktion von g in das bereits angelegte Koordinatensystem.

c.) Berechnen Sie den Inhalt der linsenförmigen Fläche die von den Graphen von g und der Umkehrfunktion von g eingeschlossen wird.

Hallo erstmal,

es geht um die o.g. Aufgabe. Ich habe bereits die beiden Graphen gezeichnet.

Scheitel von g(x) ist (4|3.2) und der der Umkehrfunktion von g(x) bei (3.2|4)

Die Beiden Graphen ergeben auch wunderbear die "linsenförmige" Fläche die es zu berechnen gibt, allerdings komm ich nicht auf den Term der Umkehrfunktion. Ich hab schon einige Anleitungen im Internet gefunden, aber trotz ewiger Rechnerei bin ich auf keinen Funktionsterm gekommen (wohl mangels mathematischer Fähigkeiten u. Vorkenntnisse ;( )

Wäre nett wenn mir jemand unter die Arme greifen könnte.

Zum Integral, die Beiden Graphen schneiden sich in (0|0) und (3|3)

sobald ich die Umkehrfunktion habe wäre die Fläche
[mm] \integral_{0}^{3}{g(x) - Umkehrfkt. von g(x)} [/mm]

stimmt das soweit?

vielen dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Umkehrfunktion und Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 So 05.11.2006
Autor: Stefan-auchLotti

[mm] \text{Hi,} [/mm]

[mm] $f:\IR\rightarrow[\bruch{8}{15};-\infty[,x\mapsto-1\bruch{1}{2}x^2+\bruch{8}{5}x [/mm] $

[mm] \text{Jetzt für die Umkehrfunktion x und y vertauschen:} [/mm]

$ [mm] f^{-1}:[\bruch{8}{15};-\infty[\rightarrow\IR,y\mapsto-1\bruch{1}{2}y^2+\bruch{8}{5}y [/mm] $

[mm] \text{Nun nach y auflösen:} [/mm]

[mm] $x=-1\bruch{1}{2}y^2+\bruch{8}{5}y$ [/mm]

[mm] \text{Weiter komme ich leider auch nicht, das haben wir in der Schule nie besprochen.} [/mm]

[mm] \text{Du sagst, dass der Definitionsbereich von g(x) von minus unendlich bis 4 ginge, aber} [/mm]

[mm] \text{der Graph ist doch für alle reellen Zahlen definiert, oder nicht? Als Scheitel von g(x) habe} [/mm]

[mm] $\text{ich}$ \quad $S\left(\bruch{8}{15}|\bruch{32}{75}\right)$ \quad $\text{, was auch nicht mit deinem}$ [/mm]

[mm] \text{Scheitelpunkt übereinstimmt. Wie bist du auf deine Koordinaten gekommen?} [/mm]

[mm] \text{Der Ansatz für die Fläche zwischen den beiden Graphen ist korrekt!} [/mm]

[mm] \text{Gruß, Stefan.} [/mm]

Bezug
                
Bezug
Umkehrfunktion und Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 So 05.11.2006
Autor: DonLorenzo

Hi,

Darauf bin ich gekommen indem ich eine Tabelle angefertigt habe, bei der Umkehrfunktion sind doch dann praktisch alle x Werte die y Werte etc.

Allerdings, weiss ich nicht wie du auf 1 1/2 x² kommst?

Vielen Dank dennoch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de