www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Umkehrfunktionen
Umkehrfunktionen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktionen: Definitions -werte bereich
Status: (Frage) beantwortet Status 
Datum: 21:57 Fr 07.01.2005
Autor: Desperado

Hallo,

f(x)=1 durch x-1

Für welche Werte ist die funktion umkehrbar?Gib definitions und wertebereich an.

ALso ich habe die erste ableitung gebildet und dann für x werte eingesetzt und geschaut wie sich die funktion verhält habe jetzt 10 und -10 eingesetzt!
Die funktion ist umkehrbar da nur negative werte rauskommen

Aber wie ist das jetzt mit dem werte und definitionsbereich zu lösen?
Wie heißt der?

b.Bestimmt die umkehrfunktion von f(x).da weiß ich nicht wie ich anfangen muss.ich weiß das man nachher argumente vertauschen muss....
kann mir jemand auf die sprünge helfen wie ich anfangen muss...

Thomas

        
Bezug
Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:37 Fr 07.01.2005
Autor: Loddar

Hallo Desperado,

da bin ich wieder [grins].


$f(x) = [mm] \bruch{1}{x-1}$ [/mm]


> Für welche Werte ist die funktion umkehrbar?Gib definitions
> und wertebereich an.
>  
> ALso ich habe die erste ableitung gebildet und dann für x
> werte eingesetzt und geschaut wie sich die funktion verhält
> habe jetzt 10 und -10 eingesetzt!
>  Die funktion ist umkehrbar da nur negative werte
> rauskommen

[notok]
Ableiten ist hier nicht erforderlich ...


> Aber wie ist das jetzt mit dem werte und definitionsbereich
> zu lösen?
> Wie heißt der?

Der Definitionsbereich einer Funktion ist die Menge aller x-Werte, die man in die Funktionsvorschrift einsetzen kann/darf.

Da man ja z.B. nie durch 0 teilen darf, untersuchen wir mal:
Wann wird bei f(x) durch 0 geteilt?

Genau dann, wenn der Zähler 0 wird.
Es muß also gelten: $(x-1) [mm] \not= [/mm] 0$   [mm] $\gdw$ [/mm]  $x [mm] \not= [/mm] 1$
Unser Definitionsbereich in [mm] $\IR$ [/mm] lautet also:
[mm] $D_x [/mm] = [mm] \IR \backslash \{1\} [/mm] = [mm] \{x \in \IR | x \not= 1\}$ [/mm]


Der Wertebereich gibt den Bereich aller y-Werte an, der bei dieser Funktion erzielt werden.

Für x-Werte nahe bei x=1 erhält man für die Funktion Werte die unendlich groß oder unendlich klein werden (je nachdem , ob ich mich von links oder rechts der 1 nähere).
Der einzige Wert, der für y = f(x) nie erzielt wird ist die 0.
Unser Wertebereich lautet also:
[mm] $W_y [/mm] = [mm] \IR \backslash \{0\} [/mm] = [mm] \{y = f(x) \in \IR | y \not= 0\}$ [/mm]



> b.Bestimmt die umkehrfunktion von f(x).da weiß ich nicht
> wie ich anfangen muss.ich weiß das man nachher argumente
> vertauschen muss....

Ob man nun zu Beginn oder am Ende die beiden  Variablennamen vertauscht, ist völlig egal ...

Jedenfalls ermitteln wir eine Umkehrfunktion [mm] $f^{-1}(x) [/mm] = [mm] f^{\star}(x)$ [/mm] (es gibt da mehrere Schreibweisen) aus der Funktion y = f(x), indem ich einfach nach der Variable x umstelle, sprich: auflöse.

Für unser Beispiel heißt das:
$y = [mm] \bruch{1}{x-1}$ [/mm]   | $* [mm] \bruch{x-1}{y}$ [/mm]
$x-1 = [mm] \bruch{1}{y}$ [/mm]   | +1
$x = [mm] \bruch{1}{y} [/mm] + 1 = [mm] \bruch{y+1}{y}$ [/mm]

Nun Variablentausch, und wir haben unsere Umkehrfunktion:
$y = [mm] f^{-1}(x) [/mm] = [mm] \bruch{x+1}{x}$ [/mm]


Alle klar(er) jetzt ??


Loddar


Bezug
                
Bezug
Umkehrfunktionen: DANKE,eine kleine frage noch..
Status: (Frage) beantwortet Status 
Datum: 23:00 Fr 07.01.2005
Autor: Desperado

man darf bei einer funktion nie durch 0 teilen thorsten?

Den rest habe ich verstanden alles verstanden!!
DANKE!!!

was ist gemeint mit bestimme die ableitungen der umkehrfunktion auf 2 arten?

Bezug
                        
Bezug
Umkehrfunktionen: kleine Antwort ...
Status: (Antwort) fertig Status 
Datum: 23:51 Fr 07.01.2005
Autor: Loddar


> man darf bei einer funktion nie durch 0 teilen thorsten?

[aufgemerkt] Du darfst NIE durch 0 teilen !!


> was ist gemeint mit bestimme die ableitungen der
> umkehrfunktion auf 2 arten?

Darunter kann ich mir nur folgendes vorstellen:

[1] Umkehrfunktion [mm] $f^{-1}(x) [/mm] = ...$ ermitteln (wie oben geschehen) und dann ganz "normal" ableiten ...

[2] Es gibt die sog. "Umkehrregel" zur Ableitung einer MBUmkehrfunktion:
[mm] $[f^{-1}(x)]' [/mm] = [mm] \bruch{1}{f'[f^{-1}(x)]}$ [/mm]


Loddar


Bezug
                
Bezug
Umkehrfunktionen: nenner umstellen!ACHJA (KLICK)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:06 Fr 07.01.2005
Autor: Desperado

hey thorsten,das heißt ja dann das ich den nenner einer funktion soweit dies möglich ist einfach nach x auflöse um D rauszufinden.


Ich erinnere mich an Kurvendiskusionen!

Bezug
                        
Bezug
Umkehrfunktionen: Definitionslücken
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Fr 07.01.2005
Autor: Loddar


> das heißt ja dann das ich den nenner einer
> funktion soweit dies möglich ist einfach nach x auflöse um
> D rauszufinden.

Streng genommen, findest Du damit die Definitionslücken.
Sprich: die Werte die vom Definitionsbereich ausgeschlossen werden, weil sie nicht eingesetzt werden dürfen.

Anderes Beispiel wäre: $y = [mm] \wurzel{x-1}$. [/mm]
Hier mußt Du den Ausdruck unter der Wurzel untersuchen, dieser darf nie negativ werden (in [mm] $\IR$). [/mm]


> Ich erinnere mich an Kurvendiskusionen!

Ja-ja. In der Mathematik holt einen alles wieder ein ... [grins]


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de