www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Umschreiben in DGL-Systeme
Umschreiben in DGL-Systeme < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umschreiben in DGL-Systeme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 Do 09.08.2007
Autor: Wills

Aufgabe
[mm] x''+y'+x=e^t [/mm]
y''+x'=e^(-t)

Hallo erstmal!

ich möchte obige aufgabe in ein dgl-system umschreiben und mein ansatz dazu wäre einen neuen vektor mit z:=(x, x', y, y')T zu definieren und diesen dann über z'=A*z zu verwenden, dabei entsteht eine 4x4-matrix

bei folgendem eigenwert-problem, bekomme ich nur 0 als EW, was leider falsch ist

danke für jede hilfe, ist dringend



# Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://bombentrichter.de/showthread.php?t=11000

        
Bezug
Umschreiben in DGL-Systeme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Fr 10.08.2007
Autor: generation...x

Vielleicht geht es auch einfacher: Leite doch mal die erste Gleichung ab und ziehe dann vom Ergebnis die zweite ab. Hilft das weiter?

Bezug
                
Bezug
Umschreiben in DGL-Systeme: einsetzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Fr 10.08.2007
Autor: Wills

das hatte ich am anfang auch probiert, also das überführen in eine DGL höherer ordnung (3. ordnung)

das bringt einem aber nur darauf, dass die 3. ableitung von y bzw x sein muss, also recht wenig

außerdem war es ja auch teil der aufgabe, in ein dgl-system zu transformieren

mir würde es ja erstmal reichen, die homogene lösung zu bekommen, wenn denn jemand weiß, wo der fehler liegt

Bezug
                        
Bezug
Umschreiben in DGL-Systeme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:55 Fr 10.08.2007
Autor: generation...x

Na gut, aber nehmen wir mal an, du gehst so vor wie von mir angedacht. Dann bekommst du:

[mm]x'''=e^t - e^{-t} \Rightarrow[/mm]
[mm]x''=e^t + e^{-t} + c_1 \Rightarrow[/mm]
[mm]x'=e^t - e^{-t} + c_1 x + c_2[/mm]

Einsetzen in die zweite DGL liefert:

[mm]y''= -e^t + 2e^{-t} - c_1 x - c_2 [/mm]

Wenn du jetzt weiter integrierst und alle Konstanten auf Null setzt, sollte das doch zumindest einen Ansatz liefern.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de