www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Umstellen Rentenbarwerformel
Umstellen Rentenbarwerformel < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umstellen Rentenbarwerformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mi 05.12.2007
Autor: ich8883

Aufgabe
So= [mm] r*q^n-1/i*1/q^n [/mm]
Auflösung nach n=????

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich hätte gerne die Einzelen Schritte der Umstellung zur Suche nach n
Ich kenne die Lösung:
n=lg(1-So)*i/r)/ -lg q

Ich schaffe es aber leider nicht alle Schritte der Umstellung zusammen zu bekommen. :-(
Über Hilfe würde ich mich echt freuen. :-)

        
Bezug
Umstellen Rentenbarwerformel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mi 05.12.2007
Autor: schachuzipus

Hallo du8883,

wie weit kommst du denn? Und wo genau steckst du fest?

M.E läuft das auf eine Substitution und eine quadratische Ergänzung hinaus (bzw. Anwendung der p/q-Formel)

Mache zuerst mal die linke Seite gleichnamig und multipliziere dann mit dem Nenner durch.

Danach schaffe die rechte Seite rüber, so dass du ne Gleichung der Form [mm] $a\cdot{}q^{2n}+b\cdot{}q^n+c=0$ [/mm] bekommst

Da kannst du [mm] $z:=q^n$ [/mm] substituieren und bekommst ne quadrat. Gleichung in $z$

Alternativ kannst du auch [mm] $q^{2n}$ [/mm] schreiben als [mm] $\left(q^n\right)^2$ [/mm] und direkt mit $q$ weiterrechnen

Dann $a$ ausklammern und p/q-Formel oder quadrat. ergänzen.

Die $a,b,c$ musste natürlich mit den obigen Umstellungen/Umformungen berechnen...

Also mach mal, soweit du kommst, wenn du noch feststeckst, frag nochmal nach, aber zeig erstmal nen Ansatz ;-)


LG

schachuzipus

Bezug
        
Bezug
Umstellen Rentenbarwerformel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mi 05.12.2007
Autor: Blech


> So= [mm]r*q^n-1/i*1/q^n[/mm]
>  Auflösung nach n=????
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich hätte gerne die Einzelen Schritte der Umstellung zur
> Suche nach n
>  Ich kenne die Lösung:
>  n=lg(1-So)*i/r)/ -lg q

das aufgelöst nach So [mm] ($=S_0$?) [/mm] ergibt:

[mm] $So=1-\frac{r}{iq^n}$ [/mm]
Und das ist im allgemeinen
[mm] $\neq rq^n [/mm] - [mm] \frac{1}{iq^n}$ [/mm]
was Du oben hingeschrieben hast.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de