Umwandeln Geradengleichung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:45 Di 11.05.2010 | Autor: | lubalu |
Aufgabe | Hier geht es um die Umwandlung einer Geradengleichung im [mm] \IR^2.
[/mm]
Beispiel (selbst gewählt):
Parameterform: [mm] G=\vektor{1 \\ 2} [/mm] + [mm] \IR \vektor{2 \\ 3} [/mm] in Normalform umwandeln und anschließend die NF wieder zurück in die Parameterform. |
Hallo.
Also: Ich wähle mir ein n [mm] \in \IR^2 [/mm] mit n [mm] \perp \vektor{2 \\ 3}, [/mm] z.B. [mm] n=\vektor{3 \\ -2}. [/mm] Außerdem berechne ich als "rechte Seite" der NF <a,n>=-1. Dann ist die Normalform meiner Geradengleichung
G= { [mm] x\in \IR^2: [/mm] <x,n>=<a,n> } = { [mm] \vektor{x_1 \\ x_2} \in \IR^2: 3x_1-2x_2=-1 [/mm] }.
Wenn ich nun diese NF wieder in Parameterform umwandeln will, gehe ich doch wie folgt vor:
Ich löse das LGS [mm] 3x_1-2x_2=-1. [/mm] Als freie Variable wähle ich [mm] x_2=\lambda. [/mm] Dann erhalte ich für [mm] x_1=-\bruch{1}{3}+\bruch{2}{3}\lambda, [/mm] also insgesamt [mm] x=\vektor{-1 \\ 0} [/mm] + [mm] \lambda \vektor{2 \\ 3}.
[/mm]
Das ist aber nicht meine Gerade G, die ich zu Beginn hatte. Der Richtungsvektor stimmt zwar, aber der Aufpunkt nicht.
Was habe ich hier falsch gemacht?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:00 Di 11.05.2010 | Autor: | statler |
Mahlzeit!
> Wenn ich nun diese NF wieder in Parameterform umwandeln
> will, gehe ich doch wie folgt vor:
> Ich löse das LGS [mm]3x_1-2x_2=-1.[/mm] Als freie Variable wähle
> ich [mm]x_2=\lambda.[/mm] Dann erhalte ich für
> [mm]x_1=-\bruch{1}{3}+\bruch{2}{3}\lambda,[/mm] also insgesamt
> [mm]x=\vektor{-1 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}.[/mm]
Hier muß es [mm] x=\vektor{\bruch{-1}{3} \\ 0} [/mm] + [mm] \lambda \vektor{2 \\ 3} [/mm] heißen, wenn du das mal genau nachvollziehst.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:13 Di 11.05.2010 | Autor: | lubalu |
> Mahlzeit!
>
> > Wenn ich nun diese NF wieder in Parameterform umwandeln
> > will, gehe ich doch wie folgt vor:
> > Ich löse das LGS [mm]3x_1-2x_2=-1.[/mm] Als freie Variable
> wähle
> > ich [mm]x_2=\lambda.[/mm] Dann erhalte ich für
> > [mm]x_1=-\bruch{1}{3}+\bruch{2}{3}\lambda,[/mm] also insgesamt
> > [mm]x=\vektor{-1 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}.[/mm]
>
> Hier muß es [mm]x=\vektor{\bruch{-1}{3} \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}[/mm]
> heißen, wenn du das mal genau nachvollziehst.
Woher das [mm] \bruch{-1}{3}?
[/mm]
Ich erhalte aus meinem LGS: [mm] x=\vektor{x_1 \\ x_2} [/mm] = [mm] \vektor{-\bruch{1}{3} + \bruch{2}{3}\lambda \\ \lambda} [/mm] = (mit 3 multipliziert) [mm] \vektor{-1+2\lambda \\ 3\lambda} [/mm] = [mm] \vektor{-1 \\ 0} [/mm] + [mm] \lambda \vektor{2 \\ 3}
[/mm]
Aber zu meiner Frage: Der Aufpunkt hat ja auch bei dir nicht gestimmt...
>
> Gruß aus HH-Harburg
> Dieter
>
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:31 Di 11.05.2010 | Autor: | statler |
Mahlzeit noch mal!
> > > Wenn ich nun diese NF wieder in Parameterform umwandeln
> > > will, gehe ich doch wie folgt vor:
> > > Ich löse das LGS [mm]3x_1-2x_2=-1.[/mm] Als freie Variable
> > wähle
> > > ich [mm]x_2=\lambda.[/mm] Dann erhalte ich für
> > > [mm]x_1=-\bruch{1}{3}+\bruch{2}{3}\lambda,[/mm] also insgesamt
> > > [mm]x=\vektor{-1 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}.[/mm]
> >
> > Hier muß es [mm]x=\vektor{\bruch{-1}{3} \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}[/mm]
> > heißen, wenn du das mal genau nachvollziehst.
>
> Woher das [mm]\bruch{-1}{3}?[/mm]
> Ich erhalte aus meinem LGS: [mm]x=\vektor{x_1 \\ x_2}[/mm] =
> [mm]\vektor{-\bruch{1}{3} + \bruch{2}{3}\lambda \\ \lambda}[/mm] =
> (mit 3 multipliziert) [mm]\vektor{-1+2\lambda \\ 3\lambda}[/mm] =
> [mm]\vektor{-1 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}[/mm]
Du darfst das nicht einfach so mit 3 multiplizieren. Dann hast du die Ortsvektoren aller Punkte auf der Geraden vom Ursprung aus mit dem Faktor 3 gestreckt. Mach dir da mit einer Zeichnung klar, das gibt eine andere Gerade, wenn sie nicht gerade selbst durch den Ursprung geht.
> Aber zu meiner
> Frage: Der Aufpunkt hat ja auch bei dir nicht gestimmt...
Ein harter Vorwurf! Aber der Aufpunkt ist nicht eindeutig bestimmt, wie du vielleicht weißt. Der Richtungsvektor übrigens auch nicht.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:40 Di 11.05.2010 | Autor: | lubalu |
> Mahlzeit noch mal!
>
> > > > Wenn ich nun diese NF wieder in Parameterform umwandeln
> > > > will, gehe ich doch wie folgt vor:
> > > > Ich löse das LGS [mm]3x_1-2x_2=-1.[/mm] Als freie
> Variable
> > > wähle
> > > > ich [mm]x_2=\lambda.[/mm] Dann erhalte ich für
> > > > [mm]x_1=-\bruch{1}{3}+\bruch{2}{3}\lambda,[/mm] also insgesamt
> > > > [mm]x=\vektor{-1 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}.[/mm]
> > >
> > > Hier muß es [mm]x=\vektor{\bruch{-1}{3} \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}[/mm]
> > > heißen, wenn du das mal genau nachvollziehst.
> >
> > Woher das [mm]\bruch{-1}{3}?[/mm]
> > Ich erhalte aus meinem LGS: [mm]x=\vektor{x_1 \\ x_2}[/mm] =
> > [mm]\vektor{-\bruch{1}{3} + \bruch{2}{3}\lambda \\ \lambda}[/mm] =
> > (mit 3 multipliziert) [mm]\vektor{-1+2\lambda \\ 3\lambda}[/mm] =
> > [mm]\vektor{-1 \\ 0}[/mm] + [mm]\lambda \vektor{2 \\ 3}[/mm]
>
> Du darfst das nicht einfach so mit 3 multiplizieren. Dann
> hast du die Ortsvektoren aller Punkte auf der Geraden vom
> Ursprung aus mit dem Faktor 3 gestreckt. Mach dir da mit
> einer Zeichnung klar, das gibt eine andere Gerade, wenn sie
> nicht gerade selbst durch den Ursprung geht.
Achso, das darf man nur bei Ursprungsgeraden. Das wusste ich nicht!
Ok, es ist [mm] \vektor{x_1 \\ x_2} [/mm] = [mm] \vektor{\bruch{-1}{3} + \bruch{2}{3} \lambda \\ \lambda} [/mm] = [mm] \vektor{\bruch{-1}{3} \\ 0} [/mm] + [mm] \lambda \vektor{2 \\ 3}.
[/mm]
>
> > Aber zu meiner
> > Frage: Der Aufpunkt hat ja auch bei dir nicht gestimmt...
>
> Ein harter Vorwurf!
Sorry, war nicht so gemeint. Ist meine Gerade von der ich ausgegangen bin dieselbe Gerade, die ich gerade rausgebracht habe? Sie hat nur einen anderen Aufpunkt.
> Aber der Aufpunkt ist nicht eindeutig
> bestimmt, wie du vielleicht weißt. Der Richtungsvektor
> übrigens auch nicht.
>
> Gruß aus HH-Harburg
> Dieter
>
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:49 Di 11.05.2010 | Autor: | statler |
Hallo Marina!
> Sorry, war nicht so gemeint. Ist meine Gerade von der ich
> ausgegangen bin dieselbe Gerade, die ich gerade
> rausgebracht habe? Sie hat nur einen anderen Aufpunkt.
Mein letzter Ratschlag zu diesem Thema: Nimm ein Blatt Papier, mal dir ein Koordinatensystem und trag die Punkte und die Gerade(n) ein. Ein Bild sagt mehr als 1000 Worte. Eigentlich müßte es wohl 1000 Wörter heißen.
Ciao
Dieter
|
|
|
|