www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Umwandlung einer komplexen Zah
Umwandlung einer komplexen Zah < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umwandlung einer komplexen Zah: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 11.09.2012
Autor: rekees

Aufgabe
(1+x)/(1-x)=i -> Magic Happens -> x(1+i)=i-1

Die obige Umformung möchte ich gerne nachvollziehen, da ich am Donnerstag eine Klausur über diskrete Mathematik schreibe.

Ich habe verschiedene Herangehensweisen probiert, erweitern oder zusammenführen umstellen usw. Aber ich komme einfach nicht auf das angegebene Ergebnis in der Lösung. Wäre für jeden Tipp oder Hinweis dankbar, der mich auf die richtige Spur lenkt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umwandlung einer komplexen Zah: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Di 11.09.2012
Autor: abakus


> (1+x)/(1-x)=i -> Magic Happens -> x(1+i)=i-1
>  Die obige Umformung möchte ich gerne nachvollziehen, da
> ich am Donnerstag eine Klausur über diskrete Mathematik
> schreibe.
>  
> Ich habe verschiedene Herangehensweisen probiert, erweitern
> oder zusammenführen umstellen usw. Aber ich komme einfach
> nicht auf das angegebene Ergebnis in der Lösung. Wäre
> für jeden Tipp oder Hinweis dankbar, der mich auf die
> richtige Spur lenkt.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
wenn (1+x)/(1-x)=i auf beiden Seiten mit (1-x) multipliziert wird (das muss gemacht worden sein, denn in deiner Lösung gibt es keinen Bruch mehr), erhält man
1+x=i-xi
Wenn man jetzt sortiert (alles mit x nach links und alles ohne x nach rechts), kommt man auf
x+xi=i-1
Hilft das weiter?
Gruß Abakus


Bezug
                
Bezug
Umwandlung einer komplexen Zah: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Di 11.09.2012
Autor: rekees

Vielen Dank es fällt mir wie Schuppen von den Augen. Da bin ich absolut nicht drauf gekommen. Danke danke, denn jetzt ist alles klar.

Bezug
                
Bezug
Umwandlung einer komplexen Zah: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Di 11.09.2012
Autor: rekees

Sorry ich muß doch nochmal nachhaken, denn wenn ich deinen Rechenweg nachvollziehe bekomme ich die 3. Binomische Formel und das [mm] x^2 [/mm] hebt sich dann nicht weg.

ich habe ja dann (1+x)(1-x)/(1-x)=i*(1-x); daraus erhalte ich oben dann [mm] (1-x^2) [/mm] / (1-x)=i-xi
auch wenn ich mit 1-x/1-x erweitere erhalte ich nicht groß etwas anderes. habe ich jetzt falsch gerechnet oder übersehe ich doch noch etwas?

Bezug
                        
Bezug
Umwandlung einer komplexen Zah: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Di 11.09.2012
Autor: Gonozal_IX

Hiho,

>  habe ich jetzt falsch gerechnet

nein,  nur Unsinn gemacht.

> oder übersehe ich doch noch etwas?

Wie wär es mit kürzen?
Es gilt doch [mm] $\bruch{a}{b}*b [/mm] = a$! Demzufolge ist dann also [mm] $\bruch{1+x}{1-x}*(1-x)$ [/mm] was?

MFG,
Gono.


Bezug
                                
Bezug
Umwandlung einer komplexen Zah: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Di 11.09.2012
Autor: rekees

Danke ^^

Das war ganz schön blöd :-D

Ich hab die Kombination gesehen und dachte automatisch an die 3. binomische formel. danke fürs aufklären.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de