www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Umwandlung in Polarform
Umwandlung in Polarform < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umwandlung in Polarform: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:27 Do 29.04.2010
Autor: lzaman

Aufgabe
geg.: [mm] \underline{Z} [/mm] = [mm] (2+2j)e^{\bruch{\pi}{6}} [/mm]

ges.: [mm] re^{j\varphi} [/mm]  

Mit Taschenrechner gelöst: [mm] \approx 4,78e^{j45°} [/mm]

Wie kann man diese Umformung ohne Taschenrechner machen? Muss man hier wirklich mit so krummen Zahlen (3,37618359...)- also [mm] 2*e^{\bruch{\pi}{6}} [/mm] - rechnen?



Bemerkung: hier ist die Zahl e gemeint!  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umwandlung in Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Do 29.04.2010
Autor: Marcel08

Hallo!


> geg.: [mm]\underline{Z}[/mm] = [mm](2+2j)e^{\bruch{\pi}{6}}[/mm]
>
> ges.: [mm]re^{j\varphi}[/mm]
> Mit Taschenrechner gelöst: [mm]\approx 4,78e^{j45°}[/mm]
>  
> Wie kann man diese Umformung ohne Taschenrechner machen?
> Muss man hier wirklich mit so krummen Zahlen
> (3,37618359...)- also [mm]2*e^{\bruch{\pi}{6}}[/mm] - rechnen?



Es gilt: [mm] z=x+iy=r(cos(\varphi)+i sin(\varphi))=re^{i\varphi}, [/mm] mit [mm] |z|=r=\wurzel{x^{2}+y^{2}} [/mm] und [mm] i\in\IC [/mm]



> Bemerkung: hier ist die Zahl e gemeint!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.





Gruß, Marcel

Bezug
                
Bezug
Umwandlung in Polarform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Do 29.04.2010
Autor: lzaman

Hallo, die Beziehungen sind mir klar. Ich habe eher gedacht mit der Zahl e hat es mehr auf sich in [mm] \IC. [/mm]

Dann ist diese Aufgabe ohne Taschenrechner nicht zu lösen oder?

Habe jetzt herausgefunden, dass [mm] cos(e^{\bruch{\pi}{6}})\approx [/mm] 1 ist.


Ausserdem kann ich noch folgendes machen:

[mm] tan^{-1}(\bruch{2*e^\bruch{\pi}{6}}{2*e^\bruch{\pi}{6}}) [/mm] = [mm] tan^{-1} [/mm] (1) = 45° damit wäre der Winkel ohne Taschenrechner zu bestimmen!

suche noch nach einfacher Bestimmung für r. Es geht mir also um den Term [mm] (2*e^\bruch{\pi}{6})^2 [/mm] .
Kann man diesen weiter vereinfachen?

Bezug
                        
Bezug
Umwandlung in Polarform: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 Fr 30.04.2010
Autor: Herby

Hi,

ich würde das hier gar nicht versuchen auszurechnen, sondern

[mm] r=\wurzel{8}*e^{\frac{\pi}6} [/mm]

stehen lassen. Zahl ist Zahl :-)


LG
Herby

Bezug
                                
Bezug
Umwandlung in Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:54 Fr 30.04.2010
Autor: lzaman

Ja soweit war ich auch schon habe es vereinfacht bis auf

[mm] \wurzel{8*e^{\bruch{\pi}{3}}} [/mm]

Weiter komme ich nicht.

Danke

Bezug
        
Bezug
Umwandlung in Polarform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:04 Fr 30.04.2010
Autor: lzaman

Gerade wurden die Lösungen veröffentlicht, und meine Rechnung ist richtig. War irgendwie zwecklos sich so langen einen Kopf darüber zu machen.

Danke nochmal.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de