www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Unabhängigkeit
Unabhängigkeit < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit: geordnete Stat./ Rangvektor
Status: (Frage) überfällig Status 
Datum: 14:30 So 22.04.2012
Autor: mikexx

Aufgabe
[mm] \textit{Hallo, liebes Forum!} [/mm]

Ich versuche gerade einen Beweis zu verstehen. Und zwar geht es um folgende Aussage:

Seien [mm] $X_i, [/mm] i=1,...,n$ Zufallsvariablen mit [mm] $X_1,...,X_n$ [/mm] unabhängig identisch verteilt wie F, F stetig. Dann gilt:

Die geordnete Statistik [mm] $(X_{(1)},...,X_{(n)})$ [/mm] und der Rangvektor [mm] $R:=R(X_1,...,X_n)$ [/mm] sind stochastisch unabhängig.


Wir haben das so aufgeschrieben:

Sei [mm] $B\in\mathcal{B}^n$ [/mm] und [mm] $\pi$ [/mm] eine Permutation auf [mm] $\left\{1,...,n\right\}$. [/mm] Dann:

[mm] $P((X_{(1)},...,X_{(n)})\in [/mm] B, [mm] R=\pi)$ [/mm]

[mm] $=P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{n}, R=\pi)$ [/mm]

[mm] $=P((X_{\pi^{-1}(1)},...,X_{\pi^{-1}(n)})\in B\cap\mathbb R_{\leq}^{n}, R=\pi)$ [/mm]

[mm] $=P(\pi^{-1}(X_1,...,X_n)\in B\cap\mathbb R_{\leq}^{n})$ [/mm]

Wegen u.i.v.:

[mm] $=P(\vec{X}\in B\cap\mathbb R_{\leq}^{n})$ \textbf{(1)} [/mm]

[mm] $=\frac{1}{n!}P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{n})$ \textbf{(2)} [/mm]

[mm] $=P(R=\pi)\cdot P(\vec{X}_{()}\in [/mm] B)$


Das Meiste daran ist mir auch - denke ich - klar, nur die mit (1) und (2) markierten Zeilen nicht.


Ich illustriere mein Problem mal an einem Beispiel:

Es sei [mm] $\vec{X}=(3,5,4)$. [/mm]

Dann ist $R=(1,3,2)$ und sei [mm] $R=\pi$. [/mm]

Gehe ich die Beweisschritte hiermit einfach mal durch:

[mm] $P((X_{(1)},...,X_{(3)})\in [/mm] B, [mm] R=\pi)=P((3,4,5)\in [/mm] B, R=(1,3,2))$

[mm] $=P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{3}, [/mm] R=(1,3,2))$

Weiter gilt dann:

[mm] $\pi^{-1}=(1,3,2), \pi^{-1}(\vec{X})=(X_1,X_3,X_2)$ [/mm]

Also oben weiter mit:

[mm] $=P((X_{\pi^{-1}(1)},X_{\pi^{-1}(2)},X_{\pi^{-1}(3)})\in B\cap\mathbb R_{\leq}^{3}, [/mm] R=(1,3,2))$

[mm] $=P((X_1,X_3,X_2)\in B\cap\mathbb R_{\leq}^{3}, [/mm] R=(1,3,2))$

[mm] $=P(\pi^{-1}(X_1,X_2,X_3)\in B\cap\mathbb R_{\leq}^{n})$ [/mm]

(Daß [mm] $R=\pi$ [/mm] ist, steckt hier ja mit drin, denn in unserer Vorlesung hatten wir das Lemma: Sei [mm] $X\in\mathbb R^n$ [/mm] mit [mm] $R(\vec{X})\in\Pi_{n}$=Menge [/mm] aller Permutationen über [mm] $\left\{1,...,n\right\}$ [/mm] und [mm] $d:=(R(\vec{X}))^{-1}\in\Pi_n$. [/mm] So gilt [mm] $x_{(i)}=x_{d_i}$. [/mm] Und hier ist ja [mm] $(R(\vec{X}))^{-1}=(\pi)^{-1}$.) [/mm]

[mm] \textit{Und jetzt ist genau der Punkt, an dem ich nicht weiterkomme (das, was ich oben als (1) und (2) markiert habe):} [/mm]

Wieso folgt denn jetzt aus der u.i.v.-Annahme, daß

[mm] $=P((X_1,X_2,X_3)\in B\cap\mathbb R_{\leq}^{3})$ [/mm]

Und wieso ist das dann identisch mit

[mm] $\frac{1}{3!}P(\vec{X}_{()}\in B\cap\mathbb R_{\leq}^{3})$ [/mm] ?


[mm] \textit{Das ist mir noch unklar.} [/mm]






        
Bezug
Unabhängigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Di 24.04.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de