www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Unabhängigkeit Ereignisse
Unabhängigkeit Ereignisse < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unabhängigkeit Ereignisse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Mi 26.11.2014
Autor: zahlenfreund

Aufgabe
Eine faire Münze wird zweimal geworfen. Wir definieren die folgenden Zufallsvariablen

X= Anzahl Kopf
Y= Anzahl Zahl
V= |X − Y |
W = 0 falls beim ersten Wurf Kopf auftritt
    1 sonst

Sind dann X, V bzw. X, W bzw. V , W unabhängig? Welche dieser Paare sind unkorreliert?



Hallo,

Definition Unabhängig: [mm] P(A\cap [/mm] B)=P(A)*P(B)

Mir ist nicht ganz klar, wie ich mit dieser Definition die Unabhängigkeit zeigen kann. Ein kleiner Denkanstoß wäre nett.

beste Grüße zahlenfreund

        
Bezug
Unabhängigkeit Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Mi 26.11.2014
Autor: abakus


> Eine faire Münze wird zweimal geworfen. Wir definieren die
> folgenden Zufallsvariablen

>

> X= Anzahl Kopf
> Y= Anzahl Zahl
> V= |X − Y |
> W = 0 falls beim ersten Wurf Kopf auftritt
> 1 sonst

>

> Sind dann X, V bzw. X, W bzw. V , W unabhängig? Welche
> dieser Paare sind unkorreliert?

>

> 
> Hallo,

>

> Definition Unabhängig: [mm]P(A\cap[/mm] B)=P(A)*P(B)

Hallo,
das ist die Definition für die Unabhängigkeit von EREIGNISSEN (nicht von Zufallsvariablen).
Gruß Abakus
>

> Mir ist nicht ganz klar, wie ich mit dieser Definition die
> Unabhängigkeit zeigen kann. Ein kleiner Denkanstoß wäre
> nett.

>

> beste Grüße zahlenfreund

Bezug
        
Bezug
Unabhängigkeit Ereignisse: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 26.11.2014
Autor: fred97


> Eine faire Münze wird zweimal geworfen. Wir definieren die
> folgenden Zufallsvariablen
>  
> X= Anzahl Kopf
>  Y= Anzahl Zahl
>  V= |X − Y |
>  W = 0 falls beim ersten Wurf Kopf auftritt
>      1 sonst
>  
> Sind dann X, V bzw. X, W bzw. V , W unabhängig? Welche
> dieser Paare sind unkorreliert?
>  
> 
>  Hallo,
>  
> Definition Unabhängig: [mm]P(A\cap[/mm] B)=P(A)*P(B)
>  
> Mir ist nicht ganz klar, wie ich mit dieser Definition die
> Unabhängigkeit zeigen kann. Ein kleiner Denkanstoß wäre
> nett.

Aus Wiki:

"Zwei reelle Zufallsvariablen X,Y heißen unabhängig, wenn für je zwei Intervalle [mm] [a_1,b_1] [/mm] und [mm] [a_2,b_2] [/mm] die Ereignisse


[mm] E_X [/mm] := [mm] \{ \omega | X(\omega) \in [a_1,b_1] \} [/mm] und [mm] E_Y [/mm] := [mm] \{ \omega | Y(\omega) \in [a_2,b_2] \} [/mm]

stochastisch unabhängig sind. Das sind sie, wenn gilt: [mm] P(E_X \cap E_Y [/mm] ) = [mm] P(E_X) P(E_Y)" [/mm]

FRED

>  
> beste Grüße zahlenfreund


Bezug
        
Bezug
Unabhängigkeit Ereignisse: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:54 Do 27.11.2014
Autor: zahlenfreund

Okay danke für eure Korrektur

X,V sind abhängig, denn Sei X=2 folgt daraus V=2 und [mm] X\cap [/mm] V=1
[mm] P(X\cap [/mm] V)=1/4  und P(X)*P(V)=1/16 [mm] \Rightarrow [/mm] X und V abhängig

Bezug
                
Bezug
Unabhängigkeit Ereignisse: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 29.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de