www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Unbestimmtes Integral
Unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unbestimmtes Integral: Lösungsweg unklar
Status: (Frage) beantwortet Status 
Datum: 13:13 Fr 08.01.2010
Autor: denker77

Aufgabe
[mm] \integral_{}^{}{f(x) 2x+2/x^{2}+x+1dx} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie ist der genaue Lösungsweg?

Was ich bisher weiß ist, dass ich zunächst aus dem Nenner die ersten beiden Ableitungen in den Zähler schreibe, dann habe ich zwei Integrale der Form f'(x) / x²+x+1 und ein Integral f''(x)/x²+x+1. Wobei f(x) der Nenner wäre.

dann kommt für das erste integral ln(x²+x+1) raus, dann komme ich nicht mehr weiter.



Dateianhänge:
Anhang Nr. 1 (Typ: docx) [nicht öffentlich]
        
Bezug
Unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Fr 08.01.2010
Autor: schachuzipus

Hallo denker77 und ganz herzlich [willkommenmr],

> [mm]\integral_{}^{}{f(x) 2x+2/x^{2}+x+1dx}[/mm]

Da steht Kauderwelsch unter dem Integral. Was hat zum einen das f(x) da verloren? Und wieso setzt du keine Klammern, wenn du den Formeleditor schon nicht benutzt.

Schließlich gilt in Europa immer noch Punkt- vor Strichrechnung!

Nun, gemeint ist wohl eher [mm] $\int{\frac{2x+2}{x^2+x+1} \ dx}$ [/mm]


>  Ich habe diese
> Frage in keinem Forum auf anderen Internetseiten gestellt.
>  
> Wie ist der genaue Lösungsweg?

Das steht doch im Anhang ...

Zunächst kannst du schreiben [mm] $\int{\frac{2x+2}{x^2+x+1} \ dx}=\int{\frac{(2x+1)+1}{x^2+x+1} \ dx}=\int{\frac{2x+1}{x^2+x+1} \ dx} [/mm] \ + \ [mm] \int{\frac{1}{x^2+x+1} \ dx}$ [/mm] da Integrale additiv sind ...

Nun ist das erste Integral ein logarithmisches, wo im Zähler die Ableitung des Nenners steht. Es ist also von der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$. [/mm]

Das hat bekanntlich als Stammfunktion [mm] $\ln(|f(x)|)+C$ [/mm]

Das kannst du nachrechnen (auch im allg. Fall), indem du den Nenner substituierst. Also hier [mm] $u=u(x):=x^2+x+1$ [/mm] (bzw. allg. $u=u(x):=f(x)$)

Das zweite Integral ist ein wenig schwieriger, aber nicht so schlimm, wenn du dich daran erinnerst, was [mm] $\int{\frac{1}{z^2+1} \ dz}$ [/mm] ist.

Das kennst du sicher: [mm] $\arctan(z)+C$ [/mm]

Von daher betrachte mal [mm] $\int{\frac{1}{x^2+x+1} \ dx}$ [/mm] und mache eine quadratische Ergänzung im Nenner:

[mm] $=\int{\frac{1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}} \ dx}=\int{\frac{1}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2} \ dx}$ [/mm]

Nun klammere noch im Nenner [mm] $\left(\frac{\sqrt{3}}{2}\right)^2$ [/mm] aus und du wirst auf eine passende Substitution kommen, um das auf die Form [mm] $K\cdot{}\int{\frac{1}{z^2+1} \ dz}$ [/mm] zu bringen.

>  
> Was ich bisher weiß ist, dass ich zunächst aus dem Nenner
> die ersten beiden Ableitungen in den Zähler schreibe, dann
> habe ich zwei Integrale der Form f'(x) / x²+x+1 und ein
> Integral f''(x)/x²+x+1. Wobei f(x) der Nenner wäre.
>  
> dann kommt für das erste integral ln(x²+x+1) raus, dann
> komme ich nicht mehr weiter.
>  
>  


Gruß

schachuzipus

Bezug
                
Bezug
Unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:58 Fr 08.01.2010
Autor: denker77

Vielen Dank für die Antwort, so kann ich das ganz gut nachvollziehen.
Mit dem Editor muss ich mich noch anfreunden ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de