www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Und-Ereignis & Oder-Ereignis
Und-Ereignis & Oder-Ereignis < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Und-Ereignis & Oder-Ereignis: Formel
Status: (Frage) beantwortet Status 
Datum: 16:54 So 24.01.2010
Autor: just_me

Aufgabe
Beispiel:
Aus einer Urne mit 100 gleichartigen Kugeln wird zufällig eine Kugel gezogen. Die Kugeln tragen die Nummern 1,2,3,...,100.
Mit welcher Wahrscheinlichkeit ist die Nummer auf der gezogenen Kugel eine Zahl, die durch 6 oder 9 teilbar ist?

Hallo,

ich wiederhole gerade Stochastik fürs Mathe-Abi. Da stoße ich wieder auf ein Problem, das ich schon damals hatte - ich weiß einfach nicht, wie man die Und-Menge ([mm]A\cap B[/mm]) berechnet und die benötige ich ja leider auch für die Oder-Menge ([mm]A\cup B[/mm]).

Ich habe jetzt mal eine Beispielaufgabe rausgesucht, mir würde aber auch einfach die Formel reichen. Ist ja ein generelles Problem ;) (Bei diesem Beispiel lässt es sich ja noch leicht nachrechnen, welche Zahlen sowohl durch 6, als auch durch 9 teilbar sind, aber das ist ja leider nicht immer so)

Liebe Grüße,
just_me

        
Bezug
Und-Ereignis & Oder-Ereignis: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 So 24.01.2010
Autor: AT-Colt

Ich weiss nicht genau, wie Du Deine Frage meinst. Wenn die Aufgaben immer von dieser Art sind, ist das $kgV$ das Mittel der Wahl:

[mm] $\Omega [/mm] = [mm] \{1,\dots,100\}$ [/mm]
Wieviele Zahlen sind durch 6 teilbar? (Menge $A := [mm] \{x\in\Omega| 6 \text{ teilt } x\}$) [/mm]
6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84,  90, 96, das sind $int(100/6) = 16$ Zahlen. $P(A) = [mm] \bruch{|A|}{|\Omega|}$ [/mm]
Wieviele Zahlen sind durch 9 teilbar? (Menge $B := [mm] \{x\in\Omega| 9 \text{ teilt } x\}$) [/mm]
9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, das sind $int(100/9) = 9$ Zahlen. $P(B) = [mm] \bruch{|B|}{|\Omega|}$ [/mm]
Jetzt wurden aber die Zahlen zweimal gezählt, die sowohl durch $6$ als auch durch $9$ teilbar sind, also die Zahlen der Menge [mm] $A\cap [/mm] B = [mm] \{x\in\Omega| 18 \text{ teilt } x\}$. [/mm]
18, 36, 54, 72, 90, das sind $int(100/18) = 5$ Zahlen.

Nun ist ja $P(A)+P(B) = [mm] P(A\cup B)+P(A\cap [/mm] B)$ und [mm] $P(A)+P(B)-P(A\cap [/mm] B) = [mm] P(A\cup [/mm] B) = 20/100$.

Bei anderen Aufgabenstellungen musst Du eben versuchen, die Schnittmenge möglichst elegant und einfach auszudrücken.

Gruß,

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de