www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Unechter Wendepunkt
Unechter Wendepunkt < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unechter Wendepunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:34 Mi 08.07.2009
Autor: rabilein1

Aufgabe
Was hat die Funktion f(x) an der Stelle [mm] x_{0}, [/mm] wenn gilt:
[mm] f’(x_{0})\not=0 [/mm]
[mm] f’’(x_{0})=0 [/mm]
[mm] f’’’(x_{0})=0 [/mm]
[mm] f’’’’(x_{0})\not=0 [/mm]

Gib ein Beispiel für so eine Funktion an.

Als Beispiel habe ich konstruiert:

f(x)= [mm] x^{4}+x [/mm]

Diese Funktion erfüllt für [mm] x_{0}=0 [/mm] die oben genannten Bedingungen.

[Dateianhang nicht öffentlich]


Wenn die 1. Ableitung NULL ist, dann liegt normalerweise ein Extrempunkt vor.  Es sei denn, die 2. Ableitung ist auch NULL.
Dann liegt ein Sattelpunkt vor.

Wenn die 2. Ableitung NULL ist, dann liegt normalerweise ein Wendepunkt vor.  Es sei denn, die 3. Ableitung ist auch NULL.
Dann liegt ein ??? vor.

Wie heißt das Pendant zu Sattelpunkt?
Ist das ein „unechter Wendepunkt“?




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Unechter Wendepunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Mi 08.07.2009
Autor: angela.h.b.


Hallo,

oh weh, fast hätte ich eine ausführliche Antwort auf eine nicht gestellte Frage abgeschickt. Zum Glück ist meine Verbindung rechtzeitig zusammengebrochen.


Um zu entscheiden, ob bei x=0 ein Wendepunkt vorliegt, muß man sich darauf besinnen, was ein Wendepunkt ist:

die Stelle, an der der Graph der Funktion seine Krümmungsrichtung ändert.

Die Krümmungsrichtung entnimmt man der 2. Ableitung.

Diese ist hier   [mm] f''(x)=12x^2. [/mm]

Wir stellen fest: [mm] f''(x)\ge [/mm] 0 für alle x.

Also ist der Graph von  f auf dem kompletten Definitionsbereich linksgekrümmt, so daß an der Stelle x=0 kein Wendepunkt vorliegt.

Ich weiß nichts davon, daß solche Punkte wie der vorliegende einen besonderen Namen haben.



> Wenn die 1. Ableitung NULL ist, dann liegt normalerweise
> ein Extrempunkt vor.  Es sei denn, die 2. Ableitung ist
> auch NULL.
> Dann liegt ein Sattelpunkt vor.

Nein, nicht unbedingt.
Wenn erste und zweite Ableitung =0 sind, dann weiß man, daß man einen Extremwert oder einen Sattelpunkt hat - ist also so schlau wie bei Kenntnis der ersten Ableitung.



> Wenn die

1. Ableitung [mm] \not=0 [/mm] ist und die

> 2. Ableitung NULL ist, dann liegt normalerweise

sicher

> ein Wendepunkt vor,

wenn die 3. Ableitung [mm] \not=0 [/mm] ist.

> Es sei denn, die 3. Ableitung ist auch
> NULL.
> Dann liegt ein ??? vor.

Ein Wendepunkt oder kein Wendepunkt.

>  
> Wie heißt das Pendant zu Sattelpunkt?
> Ist das ein „unechter Wendepunkt“?

Wie gesagt, ich weiß nichts von einem besonderen Namen.
Man würde hier dann wohl eher über die Eigenschaften der 1. Ableitung sprechen.

Gruß v. Angela












Bezug
                
Bezug
Unechter Wendepunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 Mi 08.07.2009
Autor: rabilein1


> fast hätte ich eine ausführliche Antwort auf eine
> nicht gestellte Frage abgeschickt.

Wie lautete denn die nicht gestellte Frage ?


> Ein Wendepunkt ist die Stelle, an der der Graph der
> Funktion seine Krümmungsrichtung ändert.
> Also ist der Graph von  f auf dem kompletten
> Definitionsbereich linksgekrümmt, so daß an der Stelle
> x=0 kein Wendepunkt vorliegt.

Bis zur Stelle x=0 war der Graph von f immer linksgekrümmt. Diese Linkskrümmung nahm immer mehr ab. An der Stelle x=0 liegt gar keine Krümmung mehr vor.
Doch nun geschieht das Unfassbare: Es wird wieder nach links gekrümmt.

Und das meinte ich mit Pendant zu Sattelpunkt: Sobald der vermeintliche Hochpunkt erreicht ist, geht der Graph nicht nach unten (dann wäre es ein "echter Hochpunkt"), sondern er geht weiter nach oben und wird somit zum Sattelpunkt.

P.S.
Während "Sattelpunkte" von Hoch- bzw. Tiefpunkt optisch leicht zu unterscheiden sind, ist ein "unechter Wendepunkt" nur schwer zu erkennen.
Selbst bei starker Vergrößerung kann man nicht erkennen, was da an der Stelle x=0 los ist.
  


Bezug
                        
Bezug
Unechter Wendepunkt: gibt's nicht!
Status: (Antwort) fertig Status 
Datum: 14:18 Mi 08.07.2009
Autor: informix

Hallo rabilein1,

> > fast hätte ich eine ausführliche Antwort auf eine
> > nicht gestellte Frage abgeschickt.
>
> Wie lautete denn die nicht gestellte Frage ?
>  
>
> > Ein Wendepunkt ist die Stelle, an der der Graph der
> > Funktion seine Krümmungsrichtung ändert.
>  > Also ist der Graph von  f auf dem kompletten

> > Definitionsbereich linksgekrümmt, so daß an der Stelle
> > x=0 kein Wendepunkt vorliegt.

[daumenhoch]

>  
> Bis zur Stelle x=0 war der Graph von f immer
> linksgekrümmt. Diese Linkskrümmung nahm immer mehr ab. An
> der Stelle x=0 liegt gar keine Krümmung mehr vor.

[verwirrt] Wie definierst du denn die MBKrümmung?

> Doch nun geschieht das Unfassbare: Es wird wieder nach
> links gekrümmt.

Also ist der Graph doch fortwährend links gekrümmt, oder?

>
> Und das meinte ich mit Pendant zu Sattelpunkt: Sobald der
> vermeintliche Hochpunkt erreicht ist, geht der Graph nicht
> nach unten (dann wäre es ein "echter Hochpunkt"), sondern
> er geht weiter nach oben und wird somit zum Sattelpunkt.
>  
> P.S.
>  Während "Sattelpunkte" von Hoch- bzw. Tiefpunkt optisch
> leicht zu unterscheiden sind, ist ein "unechter Wendepunkt"
> nur schwer zu erkennen.
> Selbst bei starker Vergrößerung kann man nicht erkennen,
> was da an der Stelle x=0 los ist.

Es gibt zwei Wege, einen MBSattelpunkt eindeutig zu bestimmen:
1. erste und zweite Ableitung von f sind =0 und [mm] f'''\ne [/mm] 0
wie Angela schon schrieb, untersucht man statt f''' den Vorzeichenwechsel bei f''.

2. man stellt fest, welche der nächsten Ableitungen als erste [mm] \ne [/mm] 0 wird:
[mm] f^{(n)}\ne [/mm] 0 und n gerade [mm] \Rightarrow [/mm] keine Wendestelle, wegen f'=0 aber eine Extremstelle
[mm] f^{(n)}\ne [/mm] 0 und n ungerade [mm] \Rightarrow [/mm] Wendestelle, wegen f'=0 eine Sattelpunkt.

Schlussendlich: es gibt keine "unechten" Wendestellen.

Gruß informix

Bezug
                                
Bezug
Unechter Wendepunkt: extreme Krümmung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Mi 08.07.2009
Autor: rabilein1


> Schlussendlich: es gibt keine "unechten" Wendestellen.

Der Ausdruck "Unechte Wendestellen" stammt von mir und war deswegen niemandem geläufig.

Allerdings finde ich den Ausdruck von fred97 eindeutiger:
"Es handelt sich um einen Punkt mit extremer Krümmung".

Das war genau das, was ich meinte.

Danke euch allen für die Mühe und die Kommentare.


Bezug
        
Bezug
Unechter Wendepunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 Mi 08.07.2009
Autor: fred97


> Was hat die Funktion f(x) an der Stelle [mm]x_{0},[/mm] wenn gilt:
>  [mm]f’(x_{0})\not=0[/mm]
>  [mm]f’’(x_{0})=0[/mm]
>  [mm]f’’’(x_{0})=0[/mm]
>  [mm]f’’’’(x_{0})\not=0[/mm]
>  
> Gib ein Beispiel für so eine Funktion an.
>  
> Als Beispiel habe ich konstruiert:
>  
> f(x)= [mm]x^{4}+x[/mm]
>  
> Diese Funktion erfüllt für [mm]x_{0}=0[/mm] die oben genannten
> Bedingungen.
>  
> [Dateianhang nicht öffentlich]
>  
>
> Wenn die 1. Ableitung NULL ist, dann liegt normalerweise
> ein Extrempunkt vor.  Es sei denn, die 2. Ableitung ist
> auch NULL.
> Dann liegt ein Sattelpunkt vor.

Das stimmt nicht. Beispiel: $f(x) = [mm] x^4$ [/mm]



>  
> Wenn die 2. Ableitung NULL ist, dann liegt normalerweise
> ein Wendepunkt vor.  Es sei denn, die 3. Ableitung ist auch
> NULL.
> Dann liegt ein ??? vor.
>  
> Wie heißt das Pendant zu Sattelpunkt?
> Ist das ein „unechter Wendepunkt“?

Setze $g = f''$

Dann: [mm] $g'(x_0) [/mm] = 0$ und [mm] $g''(x_0) \not= [/mm] 0$ . Also hat g in [mm] x_0 [/mm] einen Extremalpunkt.

Somit liegt bei f in [mm] x_0 [/mm] ein punkt mit extremaler Krümmung vor


FRED




>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de