www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Uneigentl. mehrdim. Integr.
Uneigentl. mehrdim. Integr. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentl. mehrdim. Integr.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Di 03.07.2012
Autor: Feinschmecker

Aufgabe
Zeigen Sie dass für alle b>0 das Integral:
[mm] \integral_{0}^{b}\integral_{0}^{\infty}{sinxe^{-xt}dt}dx [/mm] absolut integrierbar ist, aber das Integral:
[mm] \integral_{0}^{\infty}\integral_{0}^{\infty}{sinxe^{-xt}dt}dx [/mm]
nicht absolut integrierbar ist


Meine Ansatz war eben zuerst nach t zu integrieren:
[mm] =\integral_{0}^{b}{\bruch{-e^{-tx}sinx}{x} dx} [/mm]
Dann die Grenzen einsetzen und den lim anwenden und bei dem anderen Summanden die Null einsetzen:
[mm] =\integral_{0}^{b}{\bruch{sinx}{x} dx} [/mm]
Und da hängt es dann da dieses Integral ja nicht existiert.



Dann habe ich Fubini probiert diesmal bei dem Integral mit den 2 unendlichen Grenzen, welches NICHT absolut integrierbar sein sollte.Also habe ich es nach x integriert.Da kam ich auf das Integral:
[mm] \integral_{0}^{/infty}{\bruch{-1}{t^{2}+1} dt} [/mm]
Aber das ist ja ganz einfach integrierbar und das dürfte es ja laut Aufgabe nicht oder.
Ich bin mir auch nicht sicher ob ich bei den Integralen Fubini anwenden darf.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Uneigentl. mehrdim. Integr.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Mi 04.07.2012
Autor: rainerS

Hallo!

> Zeigen Sie dass für alle b>0 das Integral:
>  [mm]\integral_{0}^{b}\integral_{0}^{\infty}{sinxe^{-xt}dt}dx[/mm]
> absolut integrierbar ist, aber das Integral:
>  
> [mm]\integral_{0}^{\infty}\integral_{0}^{\infty}{sinxe^{-xt}dt}dx[/mm]
> nicht absolut integrierbar ist
>  
> Meine Ansatz war eben zuerst nach t zu integrieren:
>  [mm]=\integral_{0}^{b}{\bruch{-e^{-tx}sinx}{x} dx}[/mm]

Das ist nicht gleich dem Integral oben.

Ich nehme an, du meinst

[mm]=\integral_{0}^{b}\left[\bruch{-e^{-tx}sinx}{x}\right]_0^\infty\, dx[/mm]

>  Dann die
> Grenzen einsetzen und den lim anwenden und bei dem anderen
> Summanden die Null einsetzen:
>  [mm]=\integral_{0}^{b}{\bruch{sinx}{x} dx}[/mm]
>  Und da hängt es
> dann da dieses Integral ja nicht existiert.

Wieso denn nicht? Der Integrand [mm]\bruch{\sin x}{x}[/mm] hat bei 0 den wohldefinierten endlichen Grenzwert 1. Damit existiert das Integral.

Aber das ist nicht die Aufgabe. Du sollst zeigen, dass

[mm] \integral_{0}^{b}\integral_{0}^{\infty}{\left|\sin xe^{-xt}\right|dt}dx[/mm]

existiert und [mm] $<\infty$ [/mm] ist.

Dein erster Schritt war im Prinzip richtig, nur dass du dabei

[mm] \integral_{0}^{b}\left|\bruch{\sin x}{x} \right|dx = \integral_{0}^{b}\bruch{|\sin x|}{x} \,dx [/mm]

herausbekommst.

Tipp: es genügt zu zeigen, dass [mm] $\bruch{|\sin x|}{x}$ [/mm] auf ganz [mm] $\IR$ [/mm] beschränkt ist (warum?)

Zum zweiten Teil: den Satz von Fubini kannst du nicht anwenden, weil die absolute Integrierbarkeit eine Voraussetzung des Satzes ist.

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de