www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Uneigentliches Integral
Uneigentliches Integral < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Uneigentliches Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 00:19 Fr 08.07.2005
Autor: Berndte2002

Hallo,

hab mal wieder ne Aufgabe, bei der ich nicht wirklich weiter komme, hoffe auf Hilfe.

Überprüfe das folgende uneigentliche Integral auf Konvergenz:

[mm] \integral_{0}^{2} {\bruch{dx}{ln(x)}} [/mm]

Ich hoffe es kann wer helfen.
mfg
Berndte

        
Bezug
Uneigentliches Integral: Zerlegen und abschätzen
Status: (Antwort) fertig Status 
Datum: 12:21 Fr 08.07.2005
Autor: Roadrunner

Hallo Berndte!


[mm]\integral_{0}^{2} {\bruch{dx}{\ln(x)}}[/mm]


Zunächst einmal mußt Du dieses Integral zerlegen, da innerhalb des zu integrierenden Intervalles eine Polstelle vorliegt bei [mm] $x_P [/mm] \ = \ 1$  :

[mm]\integral_{0}^{2} {\bruch{dx}{\ln(x)}} \ = \ \integral_{0}^{1} {\bruch{dx}{\ln(x)}} + \integral_{1}^{2} {\bruch{dx}{\ln(x)}}[/mm]


Nun haben wir zwei uneigentliche Integral zu untersuchen:

[1.]  [mm]\integral_{0}^{1} {\bruch{dx}{\ln(x)}} \ = \ \limes_{\varepsilon_1 \rightarrow 1} \integral_{0}^{\varepsilon_1} {\bruch{dx}{\ln(x)}}[/mm]



[2.]  [mm]\integral_{1}^{2} {\bruch{dx}{\ln(x)}} \ = \ \limes_{\varepsilon_2 \rightarrow 1} \integral_{\varepsilon_2}^{2} {\bruch{dx}{\ln(x)}}[/mm]

Für den Nachweis der Konvergenz bzw. Divergenz solltest Du diese beiden Integrale mal abschätzen gegenüber bekannte Integrale.


[aufgemerkt] Sieh Dir mal dazu meine Skizze an:


[Dateianhang nicht öffentlich]


Und, zu welchem Ergebnis kommst Du: Konvergenz oder Divergenz ??


Gruß vom
Roadrunner


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Uneigentliches Integral: Lösung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:59 Fr 08.07.2005
Autor: Berndte2002

Hallo,

Danke erstmal für die Antwort.

Es gilt folgende Regel für die Abschätzung, die ich benutzt habe:

Wenn [mm] \limes_{x\rightarrow\varepsilon}\bruch{f(x)}{g(x)} [/mm] = k mit [mm] k\not=0 [/mm] und [mm] k\not=\infty [/mm]

dann entweder [mm] \integral_{a}^{b} [/mm] f(x) dx und [mm] \integral_{a}^{b} [/mm] g(x) dx beide konvergent oder beide divergent

Sei f(x) = [mm] \bruch{1}{ln(x)} [/mm] und

g(x) = [mm] \bruch{1}{x-1} [/mm] für [mm] \integral_{1}^{2} {\bruch{dx}{ln(x)}} [/mm]
g(x) = [mm] \bruch{1}{1-x} [/mm] für [mm] \integral_{0}^{1} {\bruch{dx}{ln(x)}} [/mm]

[mm] \limes_{x\rightarrow1}\bruch{f(x)}{g(x)} [/mm] = [mm] \limes_{x\rightarrow1}\bruch{x-1}{ln(x)} [/mm] = [mm] ["\bruch{0}{0}"] [/mm] -> de l'Hostpital = [mm] \limes_{x\rightarrow1}\bruch{1}{\bruch{1}{x}} [/mm] = [mm] \limes_{x\rightarrow1}x [/mm] = 1

Dies ist dann -1 für die zweite Variante.

[mm] \integral_{1}^{2} {\bruch{dx}{(x-1)^{\alpha}}} [/mm] und [mm] \integral_{0}^{1} {\bruch{dx}{(1-x)^{\alpha}}} [/mm] sind beide divergent für [mm] \alpha=1. [/mm]

Somit ist auch [mm] \integral_{0}^{2} {\bruch{dx}{ln(x)}} [/mm] divergent.

Richtig soweit?

Danke
mfg
Berndte

Bezug
                        
Bezug
Uneigentliches Integral: Andere Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:37 Fr 08.07.2005
Autor: Roadrunner

Hallo Berndte!


Ich muß gestehen, diese Sätze, die Du verwendet hast, kenne ich nicht [peinlich] .
(Was jetzt nicht heißen soll, daß dieser Weg falsch sei ... !!)


Meine Idee war halt, die Divergenz des Integrales über Minoranten der beiden Abschnittsintegrale nachzuweisen.

[mm]\integral_{1}^{2} {\bruch{dx}{\ln(x)}} \ \red{>} \ \integral_{1}^{2} {\bruch{dx}{x-1}}[/mm]

bzw.

[mm]\integral_{0}^{1} {\bruch{dx}{\ln(x)}} \ \red{>} \ \integral_{0}^{1} {\bruch{1}{x-1} + 1 \ dx}[/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de