www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Ungleichung
Ungleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Fr 30.01.2009
Autor: Dinker

Bestimmen Sie (in der Grundmenge [mm] \IR) [/mm] die Lösungsmenge der UNgleichung [mm] \bruch{2x}{x-2} [/mm] < [mm] \bruch{x}{x + 1} [/mm]

Hab mal den Nenner wegmultipliziert l (x-2) * (x + 1)

2x (x + 1) < x (x -2)
[mm] 2x^{2} [/mm] + 2x <  [mm] x^{2} [/mm] -2x

Ich hab mich mal beschlossen die Schnittpunkte zu bestimmen
[mm] 2x^{2} [/mm] + 2x =  [mm] x^{2} [/mm] -2x
x ( x + 4) = 0

[mm] S_{1} [/mm] = (0/0)

[mm] S_{2} [/mm] = (-4/24)

Ich erkenne nun
[mm] \IR [/mm] = [mm] \{x l -4 < x < 0 \varepsilon \IR ohne -1 \} [/mm]

Ich weiss nicht wie man das richtig schreibt
In Worten x muss zwischen -4 und 0 sein jedoch darf nicht -1 sein

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.









        
Bezug
Ungleichung: Korrekturen
Status: (Antwort) fertig Status 
Datum: 14:41 Fr 30.01.2009
Autor: Loddar

Hallo Dinker!


Woran erkennst Du denn die gesuchten Intervalle? Wie begründest Du das?

Zudem musst Du hier auch eine Fallunterscheidung machen. Deine Umformung "multiplizieren mit dem Hauptnenner" stimmt so nur, wenn
$$(x-2)*(x+1) \ [mm] \red{>} [/mm] \ 0$$
Anderenfalls muss sich nämlich das Ungleichheitszeichen umkehren.


Gruß
Loddar


Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Fr 30.01.2009
Autor: Dinker

Also ich hab mir nochmals überdenkt
Vielleicht wäre es so die klügere Schreibweise:

[mm] \bruch{x(x + 4)}{(x + 1)(x - 2)} [/mm] > 0

Nun könnte man den Graphen f(x) = [mm] \bruch{x(x + 4)}{(x + 1)(x - 2)} [/mm] aufzeichnen. Und Lösung wäre alles, was unterhalb der Y Achse liegt



Bezug
                        
Bezug
Ungleichung: zeichnerische Lösung
Status: (Antwort) fertig Status 
Datum: 15:00 Fr 30.01.2009
Autor: Loddar

Hallo Dinker!


> [mm]\bruch{x(x + 4)}{(x + 1)(x - 2)}[/mm] > 0

Das muss aber [mm] $\red{<} [/mm] \ 0$ heißen.

  

> Nun könnte man den Graphen f(x) = [mm]\bruch{x(x + 4)}{(x + 1)(x - 2)}[/mm]
> aufzeichnen. Und Lösung wäre alles, was unterhalb der Y
> Achse liegt

[ok] Allerdings handelt es sich dann um eine zeichnerische Lösung; und nicht um eine rechnerische, nach welcher meist gefragt ist.


Gruß
Loddar


Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Fr 30.01.2009
Autor: Dinker

Kannst du mir mal bitte Schritt für Schritt genau aufzeigen, wie du es machen würdest?

Besten Dank

Gruss Dinker

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Fr 30.01.2009
Autor: Teufel

Hi!

Ich hoffe es ist ok, wenn ich antworte, da Loddar wohl gerade weg ist. :)

[mm] \bruch{x(x + 4)}{(x + 1)(x - 2)}<0 [/mm]

Der Bruch wird kleiner als 0 wenn:
1. Zähler>0 und Nenner<0
oder
2. Zähler<0 und Nenner>0

Nun musst du gucken, dann das eintrifft und dann die herausgefundenen Bereiche miteinander "verbinden". Weißt du, wie das geht? Die Teilbereiche herauszufinden, sollte nicht so schwer sein, da du alles ja schön in Linearfaktoren gegeben hast.

[anon] Teufel

Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Fr 30.01.2009
Autor: Dinker

Hab es natürlich gerade verkehrt gemacht < 0

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de