www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis" - Ungleichung
Ungleichung < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 So 01.11.2009
Autor: hotsauce

Hallo,

in der Vorlesung hatten wir diese Ungleichung:

[mm] \bruch{7x-2}{2x+5}\ge2 [/mm]

erstmal die fallunterscheidung:

1. 2x+5>0 [mm] \gdw x>\bruch{-5}{2} [/mm]

7x-2 [mm] \ge [/mm] 2(2x+5) [mm] \gdw x\le4\lex [/mm]

2. ...

für den ersten fall habe ich folgendes Intervall abgeschrieben: [mm] [4;\infty) [/mm]

wie kommt man auf das intervall?? ich würde viel mehr sagen, dass [mm] (\bruch{-5}{2};4] [/mm] eher richtig ist... ist das denn so?

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:35 So 01.11.2009
Autor: ChopSuey

Hi Hotsauce,

hm, warum die Fallunterscheidung? Evtl Betragsstriche vergessen?

$ [mm] \bruch{7x-2}{2x+5}\ge2 [/mm] $

$ 7x-2 [mm] \ge [/mm] 2(2x+5) $

$ 7x-2 [mm] \ge [/mm] 4x+10 $

$ 3x [mm] \ge [/mm] 12 $

$ x [mm] \ge [/mm] 4 $

$\ [mm] \Rightarrow [/mm] x [mm] \in [/mm] [4, [mm] \infty[ [/mm] $

Viele Grüße
ChopSuey

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 So 01.11.2009
Autor: hotsauce

nee, nee, keine Betragsstriche, ganz sicher!

Mann muss doch den Nenner erstmal mit kleiner 0 und größer 0 betrachten, dann kommt das, was du geschrieben hast... zumindest habe ich das so abgeschrieben ... hmm... bin jetzt verwirrt

Bezug
                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 So 01.11.2009
Autor: fencheltee


> nee, nee, keine Betragsstriche, ganz sicher!
>  
> Mann muss doch den Nenner erstmal mit kleiner 0 und
> größer 0 betrachten, dann kommt das, was du geschrieben
> hast... zumindest habe ich das so abgeschrieben ... hmm...
> bin jetzt verwirrt

du hattest doch erst die vorraussetzung für den 1. fall:
2x+5>0 [mm] \gdw [/mm] x>-2,5
dann gilt:
[mm] 7x-2\ge 2(2x+5)\gdw x\ge [/mm] 4
[mm] L_1=[4;\infty[ [/mm]
du hast also nur das relationszeichen falsch herum gehabt

gruß tee

Bezug
                                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 So 01.11.2009
Autor: hotsauce

das relationszeichen dreht sich doch nur um, sobald ich durch eine negative zahl dividiere oder entsprechend multipliziere oder nicht?

Bezug
                                        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 01.11.2009
Autor: fencheltee


> das relationszeichen dreht sich doch nur um, sobald ich
> durch eine negative zahl dividiere oder entsprechend
> multipliziere oder nicht?

ja, aber wie gehen ja im ersten fall davon aus, dass der nenner positiv ist, dann multiplizieren wir damit:
[mm] 7x-2\ge [/mm] 2(2x+5)
[mm] \gdw [/mm] 7x-2 [mm] \ge [/mm] 4x +10
[mm] \gdw 3x\ge [/mm] 12
[mm] \gdw [/mm] x [mm] \ge [/mm] 4

also weiss ich nicht warum du das relationszeichen überhaupt gedreht hast?!

mfg tee

Bezug
                                                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:40 So 01.11.2009
Autor: hotsauce

ach du sch****, habs wohl falsch abgeschr. ... hat sich geklärt dadurch, danke und gute nacht ;-)

Bezug
                
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 So 01.11.2009
Autor: fencheltee


> Hi Hotsauce,
>  
> hm, warum die Fallunterscheidung?

ich hoffe du erinnerst dich, dass wenn [mm] 2x+5\le [/mm] 0, und es wird damit multipliziert, dann dreht sich das relationszeichen?
mfg tee

> Evtl Betragsstriche
> vergessen?
>  
> [mm]\bruch{7x-2}{2x+5}\ge2[/mm]
>  
> [mm]7x-2 \ge 2(2x+5)[/mm]
>  
> [mm]7x-2 \ge 4x+10[/mm]
>  
> [mm]3x \ge 12[/mm]
>  
> [mm]x \ge 4[/mm]
>  
> [mm]\ \Rightarrow x \in [4, \infty[[/mm]
>  
> Viele Grüße
>  ChopSuey


Bezug
                        
Bezug
Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 So 01.11.2009
Autor: ChopSuey

Hallo fencheltee,

stimmt, Du hast natürlich Recht.

Vielen Dank
Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de