www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Ungleichung
Ungleichung < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Lösungsmenge bestimmen
Status: (Frage) beantwortet Status 
Datum: 17:27 Fr 09.07.2010
Autor: Martin1988

Aufgabe
Bestimmen Sie die Lösungsmenge IL der Ungleichung

[mm] \bruch{x+1}{x+2}\le\bruch{x+3}{x+4} [/mm]

und damit die ganzen Zahlen a und b , für die gilt: IL = ( [mm] -\infty, [/mm] a ) (b , [mm] +\infty [/mm] ) .

Gerechnet habe ich wie folgt:

[mm] (x+1)*(x+4)\le(x+3)*(x+2) [/mm]

[mm] x^2+5x+4\le x^2+5x+6 [/mm]

[mm] \bruch{x^2+5x+4}{x^2+5x+6}\le0 [/mm]

Nun dürfen ja sowohl Zähler als auch der Nenner nicht kleiner als Null werden.

- also erste zu lösende Gleichung:  [mm] x^2+5x+6=0 [/mm]

- zweite: [mm] x^2+5x+4=0 [/mm]

Ergebnisse für die erste Gleichung:

[mm] x_{1}=-3 [/mm]
[mm] x_{2}=-2 [/mm]

Für die Zweite:

[mm] x_{3}=-4 [/mm]
[mm] x_{4}=-1 [/mm]

Daher dachte ich nun, die Lösung wäre IL = ( [mm] -\infty, [/mm] -4 ) (-1 , [mm] +\infty [/mm] )

Laut Lösungsbuch ist aber die Lösung IL = ( [mm] -\infty, [/mm] -4 ) (-2 , [mm] +\infty [/mm] ) korrekt.

Wo ist der Fehler?

Danke im Voraus!! :)

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:44 Fr 09.07.2010
Autor: MathePower

Hallo Matrin1988,

> Bestimmen Sie die Lösungsmenge IL der Ungleichung
>  
> [mm]\bruch{x+1}{x+2}\le\bruch{x+3}{x+4}[/mm]
>  
> und damit die ganzen Zahlen a und b , für die gilt: IL = (
> [mm]-\infty,[/mm] a ) (b , [mm]+\infty[/mm] ) .
>  Gerechnet habe ich wie folgt:
>  
> [mm](x+1)*(x+4)\le(x+3)*(x+2)[/mm]
>  
> [mm]x^2+5x+4\le x^2+5x+6[/mm]
>  
> [mm]\bruch{x^2+5x+4}{x^2+5x+6}\le0[/mm]
>  
> Nun dürfen ja sowohl Zähler als auch der Nenner nicht
> kleiner als Null werden.
>  
> - also erste zu lösende Gleichung:  [mm]x^2+5x+6=0[/mm]
>  
> - zweite: [mm]x^2+5x+4=0[/mm]
>  
> Ergebnisse für die erste Gleichung:
>  
> [mm]x_{1}=-3[/mm]
>  [mm]x_{2}=-2[/mm]
>  
> Für die Zweite:
>  
> [mm]x_{3}=-4[/mm]
>  [mm]x_{4}=-1[/mm]
>  
> Daher dachte ich nun, die Lösung wäre IL = ( [mm]-\infty,[/mm] -4
> ) (-1 , [mm]+\infty[/mm] )
>
> Laut Lösungsbuch ist aber die Lösung IL = ( [mm]-\infty,[/mm] -4 )
> (-2 , [mm]+\infty[/mm] ) korrekt.
>  
> Wo ist der Fehler?


Hier mußt Du eine Fallunterscheidung machen:

i) [mm] x > -2 [/mm]
[mm] \Rightarrow x+2 > 0, \ x+4 > 0[/mm]

ii) [mm] -4 < x < -2[/mm]
[mm] \Rightarrow x+2 < 0, \ x+4 > 0[/mm]

iii) [mm] x < -4[/mm]
[mm] \Rightarrow x+2 < 0, \ x+4 < 0[/mm]


>  
> Danke im Voraus!! :)



Gruss
MathePower

Bezug
                
Bezug
Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Fr 09.07.2010
Autor: Martin1988

Tut mir leid, aber ich verstehe die Antwort nicht ..... :-(

Bezug
                        
Bezug
Ungleichung: genauer fragen!
Status: (Antwort) fertig Status 
Datum: 18:21 Fr 09.07.2010
Autor: Loddar

Hallo Martin!


Du solltest hier schon "etwas" genauer fragen, damit man Dir auch helfen kann.

Da bei einer Ungleichung das Ungleichheitszeichen umgedreht werden muss, wenn man diese Ungleichung mit einem negativen Term multipliziert oder dividiert, musst Du zunächst untersuchen, ob dieser Term nun posotiv oder negativ ist.

In Deinem Fall kann sogar beides auftreten, so dass hier die o.g. Fallunterscheidung vollzogen werden muss.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de