www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Ungleichung
Ungleichung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung: Lösung folgender Ungleichung
Status: (Frage) beantwortet Status 
Datum: 13:19 Do 25.08.2011
Autor: Keywey

Aufgabe
Löse die Ungleichung (x-1)*(x-2)*(x-3)>0

Guten Tag!
Ist schon eine Weile her mit der Schulmathematik, bzw. mit dem Lösen von Ungleichungen!
Wie gehe ich hierbei genau vor?

Ich hatte den Ansatz zu sagen, dass die Ungleichung erfüllt wird, wenn alle Faktoren positiv sind.
Das wäre bei x>3 der Fall!
Dann habe ich das festgehalten und gesagt, dass nun die verbleibenden Faktoren entweder beide positiv (oben schon enthalten) oder beide negativ sein müssen.
Also (x-1)*(x-2)<0 [mm] \wedge [/mm] x>3

Ich habe mir den Graphen zeichnen lassen und so die Lösung gesehen. Komme aber nicht drauf...
Wäre nett, wenn mir jemand kurz helfen könnte!
Grüße

        
Bezug
Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 Do 25.08.2011
Autor: schachuzipus

Hallo Keywey,


> Löse die Ungleichung (x-1)*(x-2)*(x-3)>0
>  Guten Tag!
>  Ist schon eine Weile her mit der Schulmathematik, bzw. mit
> dem Lösen von Ungleichungen!
>  Wie gehe ich hierbei genau vor?
>  
> Ich hatte den Ansatz zu sagen, dass die Ungleichung
> erfüllt wird, wenn alle Faktoren positiv sind.

Ja, aber nicht nur dann!

>  Das wäre bei x>3 der Fall! [ok]
>  Dann habe ich das festgehalten und gesagt, dass nun die
> verbleibenden Faktoren entweder beide positiv (oben schon
> enthalten) oder beide negativ sein müssen.
>  Also (x-1)*(x-2)<0 [mm]\wedge[/mm] x>3

Da muss doch [mm]\red{>}[/mm] stehen, ein Produkt zweier negativer Faktoren ist positiv!

Du hast die richtige Idee.

Neben der Möglichkeit, dass alle 3 Faktoren positiv sind, gibt's die Möglichkeit, dass einer positiv und die anderen beiden negativ sind.

Spiele alle Möglichkeiten durch:

zB. 1.Faktor positiv, 2. und 3. Faktor negativ, dh.

[mm]x>1\wedge x<2\wedge x<3[/mm]

Ist diese Konstellation möglich?

[mm]x[/mm] gleichzeitig größer als 1 und kleiner als 2 und kleiner als 3?

Ja, aus welchem Intervall muss x sein?

Welche Möglicheiten gibt es noch dafür, dass ein Faktor positiv und die beiden anderen negativ sind?

>  
> Ich habe mir den Graphen zeichnen lassen und so die Lösung
> gesehen. Komme aber nicht drauf...
> Wäre nett, wenn mir jemand kurz helfen könnte!
>  Grüße

Gruß

schachuzipus


Bezug
        
Bezug
Ungleichung: Lösung ohne Rechnen
Status: (Antwort) fertig Status 
Datum: 13:50 Do 25.08.2011
Autor: Al-Chwarizmi


> Löse die Ungleichung (x-1)*(x-2)*(x-3)>0
>  Guten Tag!
>  Ist schon eine Weile her mit der Schulmathematik, bzw. mit
> dem Lösen von Ungleichungen!
>  Wie gehe ich hierbei genau vor?
>  
> Ich hatte den Ansatz zu sagen, dass die Ungleichung
> erfüllt wird, wenn alle Faktoren positiv sind.
>  Das wäre bei x>3 der Fall!
>  Dann habe ich das festgehalten und gesagt, dass nun die
> verbleibenden Faktoren entweder beide positiv (oben schon
> enthalten) oder beide negativ sein müssen.
>  Also (x-1)*(x-2)<0 [mm]\wedge[/mm] x>3
>  
> Ich habe mir den Graphen zeichnen lassen und so die Lösung
> gesehen. Komme aber nicht drauf...
> Wäre nett, wenn mir jemand kurz helfen könnte!
>  Grüße


Hallo Keywey,

die Idee mit dem Graph scheint mir gut. Ich hätte die
Ungleichung direkt ausgehend von der Idee gelöst, dass
man den Graph von  $\ [mm] f:x\mapsto [/mm] (x-1)*(x-2)*(x-3)$  betrachten kann
und dann praktisch ohne Rechnung zur Lösung kommen
kann. Dabei ist aber wichtig, dass man nicht einfach
ein Plotprogramm hernimmt und dann das Bildchen
anguckt. Man kann aber leicht eine rudimentäre Kurven-
diskussion (ohne Ableitungen !) vornehmen, die alles
Wichtige zeigt:

  1.) f ist auf ganz [mm] \IR [/mm] definiert und stetig
  2.) f hat die 3 Nullstellen 1, 2 und 3 und keine weiteren
  3.) aus 1.) und 2.) folgt, dass f nur an den 3 Nullstellen
      das Vorzeichen wechseln kann
  4.) man kann auch leicht zeigen, dass f an diesen 3
      Stellen das Vorzeichen wechseln muss
  5.) Aus [mm] \limes_{x\to\infty}f(x)=+\infty [/mm] folgt in Verbindung mit den vorange-
      henden Überlegungen, dass f(x)>0 für x>3
  6.) Die übrigen Intervalle erhalten nun abwechselnde
      Minus- und Pluszeichen für die Werte von f(x)

LG   Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de