www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Ungleichung beweisen
Ungleichung beweisen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:32 Mo 21.10.2013
Autor: mathe-antifreak

Aufgabe
Zeigen Sie mittels vollständiger Induktion, dass für alle natürlichen Zahlen n mit [mm] n\ge31 [/mm]
[mm] n^{2}<(\bruch{5}{4})^n [/mm]
gilt

Schönen Abend.

Der Induktionsanfang passt, aber ich habe Probleme beim Schritt:

n->n+1
[mm] (n+1)^{2}<(\bruch{5}{4})^{n+1} [/mm]
Meine Schritte:          
[mm] (n+1)^{2}=n^{2}+2n+1<(\bruch{5}{4})^{n}+2n+1 [/mm]
                 ^Hier meine Induktionsvoraussetzung eingesetzt.
[mm] (\bruch{5}{4})^{n+1}=(\bruch{5}{4})^{n}*(\bruch{5}{4}) [/mm]

Nur kann ich jetzt nicht weiter vereinfachen, so dass ich eine sinnvolle Aussagenkette bilden kann.
[mm] (n+1)^{2}=n^{2}+2n+1<(\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}*(\bruch{5}{4})=(\bruch{5}{4})^{n+1} [/mm]
So solls zum Schluss aussehen, kann mir aber nicht vorstellen, dass dieser Beweis schon fertig ist.
[mm] (\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}*(\bruch{5}{4}) [/mm]
Dieser Ausdruck bereitet mir Kopfschmerzen, da nicht sofort herausgeht, dass diese Ungleichung für alle n>31 wahr ist.
Kann mir wer helfen und mir erklären, was noch fehlt, oder ob das so in Ordnung gehen würde?
Danke schon mal

        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:48 Mo 21.10.2013
Autor: fred97


> Zeigen Sie mittels vollständiger Induktion, dass für alle
> natürlichen Zahlen n mit [mm]n\ge31[/mm]
>  [mm]n^{2}<(\bruch{5}{4})^n[/mm]
>  gilt
>  Schönen Abend.
>  
> Der Induktionsanfang passt, aber ich habe Probleme beim
> Schritt:
>  
> n->n+1
>  [mm](n+1)^{2}<(\bruch{5}{4})^{n+1}[/mm]
>  Meine Schritte:          
> [mm](n+1)^{2}=n^{2}+2n+1<(\bruch{5}{4})^{n}+2n+1[/mm]
> ^Hier meine Induktionsvoraussetzung eingesetzt.
>  [mm](\bruch{5}{4})^{n+1}=(\bruch{5}{4})^{n}*(\bruch{5}{4})[/mm]
>  
> Nur kann ich jetzt nicht weiter vereinfachen, so dass ich
> eine sinnvolle Aussagenkette bilden kann.
>  
> [mm](n+1)^{2}=n^{2}+2n+1<(\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}*(\bruch{5}{4})=(\bruch{5}{4})^{n+1}[/mm]
>  So solls zum Schluss aussehen, kann mir aber nicht
> vorstellen, dass dieser Beweis schon fertig ist.
> [mm](\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}*(\bruch{5}{4})[/mm]


Diese Ungl. ist gleichbedeutend mit:

[mm] 8n+4<(\bruch{5}{4})^{n} [/mm]


Für welche n ist

8n+4 [mm] \le n^2 [/mm] ?

FRED

>  Dieser Ausdruck bereitet mir Kopfschmerzen, da nicht
> sofort herausgeht, dass diese Ungleichung für alle n>31
> wahr ist.
>  Kann mir wer helfen und mir erklären, was noch fehlt,
> oder ob das so in Ordnung gehen würde?
>  Danke schon mal


Bezug
                
Bezug
Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:50 Mo 21.10.2013
Autor: mathe-antifreak


> Diese Ungl. ist gleichbedeutend mit:
>  
> [mm]8n+4<(\bruch{5}{4})^{n}[/mm]
>  

Hmm...das verstehe ich jetzt nicht so richtig. Warum sollten die gleichbedeutend sein?

>
> Für welche n ist
>  
> 8n+4 [mm]\le n^2[/mm] ?

Für alle [mm] n\ge9 [/mm]
Aber ich weiß wirklich nicht, wie mir das weiterhelfen soll?

>  
> FRED



Bezug
                        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:57 Mo 21.10.2013
Autor: fred97


>
> > Diese Ungl. ist gleichbedeutend mit:
>  >  
> > [mm]8n+4<(\bruch{5}{4})^{n}[/mm]
>  >  
> Hmm...das verstehe ich jetzt nicht so richtig. Warum
> sollten die gleichbedeutend sein?

$ [mm] (\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}\cdot{}(\bruch{5}{4}) [/mm] $

[mm] \gdw [/mm]

2n+1 < [mm] (\bruch{5}{4})^{n}(\bruch{5}{4}-1) [/mm]

>  >

> > Für welche n ist
>  >  
> > 8n+4 [mm]\le n^2[/mm] ?
>  
> Für alle [mm]n\ge9[/mm]
>  Aber ich weiß wirklich nicht, wie mir das weiterhelfen
> soll?

Wenn 8n+4 [mm]\le n^2[/mm] ist, so ist nach I.V.:

     [mm]8n+4<(\bruch{5}{4})^{n}[/mm]

FRED

>  >  
> > FRED
>  
>  


Bezug
                                
Bezug
Ungleichung beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:41 Mo 21.10.2013
Autor: mathe-antifreak


>  
> [mm](\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}\cdot{}(\bruch{5}{4})[/mm]
>  
> [mm]\gdw[/mm]
>
> 2n+1 < [mm](\bruch{5}{4})^{n}(\bruch{5}{4}-1)[/mm]

Ok, jetzt ist es einleuchtend

>  
> >  >

> > > Für welche n ist
>  >  >  
> > > 8n+4 [mm]\le n^2[/mm] ?
>  >  
> > Für alle [mm]n\ge9[/mm]
>  >  Aber ich weiß wirklich nicht, wie mir das weiterhelfen
> > soll?
>  
> Wenn 8n+4 [mm]\le n^2[/mm] ist, so ist nach I.V.:
>  
> [mm]8n+4<(\bruch{5}{4})^{n}[/mm]

Ja, das klingt auch einleuchtend, aber ich weiß nicht so recht, wie ich das hier in meinen Beweis einbringen soll. Muss ich das nur argumentieren, oder wirklich 2 mal die IV einsetzen? Das haben wir noch nie gemacht.

>  
> FRED
>  >  >  
> > > FRED
>  >  
> >  

>  


Bezug
                                        
Bezug
Ungleichung beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Mo 21.10.2013
Autor: fred97


> >  

> >
> [mm](\bruch{5}{4})^{n}+2n+1<(\bruch{5}{4})^{n}\cdot{}(\bruch{5}{4})[/mm]
>  >  
> > [mm]\gdw[/mm]
> >
> > 2n+1 < [mm](\bruch{5}{4})^{n}(\bruch{5}{4}-1)[/mm]
>  
> Ok, jetzt ist es einleuchtend
>  >  
> > >  >

> > > > Für welche n ist
>  >  >  >  
> > > > 8n+4 [mm]\le n^2[/mm] ?
>  >  >  
> > > Für alle [mm]n\ge9[/mm]
>  >  >  Aber ich weiß wirklich nicht, wie mir das
> weiterhelfen
> > > soll?
>  >  
> > Wenn 8n+4 [mm]\le n^2[/mm] ist, so ist nach I.V.:
>  >  
> > [mm]8n+4<(\bruch{5}{4})^{n}[/mm]
>  
> Ja, das klingt auch einleuchtend, aber ich weiß nicht so
> recht, wie ich das hier in meinen Beweis einbringen soll.
> Muss ich das nur argumentieren,

zeige induktiv: 8n+4 $ [mm] \le n^2 [/mm] $ für alle $ [mm] n\ge9 [/mm] $



>  oder wirklich 2 mal die IV
> einsetzen?

Ja, zweimal IV.

>  Das haben wir noch nie gemacht.

Na und, irgendwann mal hast Du ja auch Deine erste Cola getrunken.

FRED

>  >  
> > FRED
>  >  >  >  
> > > > FRED
>  >  >  
> > >  

> >  

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de