www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ungleichung konkave Funktion
Ungleichung konkave Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung konkave Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Do 07.04.2011
Autor: Salamence

Aufgabe
Sei [mm] f\in C^{2}(\IR) [/mm] derart, dass f(0)=0, f'>0 und [mm] f''(t)\le0 \forall [/mm] t>0 gilt dann für alle a, b>0 folgende Ungleichung?

[mm] f(a+b)\le [/mm] f(a)+f(b)


Hallo!

Also eigentlich geht es darum, nachzurechnen, dass was eine Metrik ist, aber da kommt halt diese auf [mm] \IR^{+} [/mm] konkave Funktion bei vor und das Problem dabei ist eigentlich nur die Ungleichung über "undirekte" Wege...
Genau: Man hat eine Metrik d und diese Funktion und [mm] f\circ [/mm] d soll dann wohl auch eine Metrik sein.
Also die Ungleichung von oben scheint richtig zu sein, stimmt zumindest beim Beispiel der Wurzelfunktion^^
Nur krieg ich das irgendwie nicht bewiesen, habs schon mit der eigentlichen Def. von Konkavität versucht, abgesehen von [mm] f''\le [/mm] 0 oder Ungleichung von Jensen, aber irgendwie krieg ichs nicht hin... Dabei kann das doch garnicht so schwer sein...denke ich

        
Bezug
Ungleichung konkave Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:25 Do 07.04.2011
Autor: fred97

Hier stimmt gewaltig etwas nicht !!

Wenn  $ [mm] f\circ [/mm] d$  wieder eine Metrik sein soll, so ist das wegen  $ [mm] f(t)\le0 \forall [/mm] $ t>0  kaum möglich !!

Soll f'>0  auf ganz [mm] \IR [/mm] gelten ?  Auch das kann nicht sein, denn es ist

     $ f'(0) = [mm] \limes_{t\rightarrow 0+0}\bruch{f(t)-f(0)}{t-0}=\limes_{t\rightarrow 0+0}\bruch{f(t)}{t} \le [/mm] 0$

Also: wie lautet die Aufgabenstellung vollständig und korrekt ?

FRED

Bezug
                
Bezug
Ungleichung konkave Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Do 07.04.2011
Autor: Salamence

Oh, ich hatte da wohl zwei Striche vergessen... nicht [mm] f(t)\ge [/mm] 0, sondern [mm] f''(t)\ge [/mm] 0 [mm] \forall [/mm] t>0, deswegen ists ja auch konkav auf [mm] \IR^{+}... [/mm]

Bezug
                        
Bezug
Ungleichung konkave Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 07.04.2011
Autor: fred97


> Oh, ich hatte da wohl zwei Striche vergessen... nicht
> [mm]f(t)\ge[/mm] 0, sondern [mm]f''(t)\ge[/mm] 0 [mm]\forall[/mm] t>0, deswegen ists
> ja auch konkav auf [mm]\IR^{+}...[/mm]  

Nein. f ist konvex !

Die Ungl. f(a+b) [mm] \le [/mm] f(a)+f(b) lässt sich nicht beweisen, denn sie ist falsch.  Beispiel: [mm] f(x)=x^2 [/mm]

Für konvexe Funktionen gilt aber (und das folgt sofort aus der Def. von "konvex"):

                [mm] f(\bruch{a+b}{2}) \le \bruch{f(a)+f(b)}{2} [/mm]

FRED


Bezug
                        
Bezug
Ungleichung konkave Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Do 07.04.2011
Autor: Gonozal_IX

Huhu,

> Oh, ich hatte da wohl zwei Striche vergessen... nicht
> [mm]f(t)\ge[/mm] 0, sondern [mm]f''(t)\ge[/mm] 0 [mm]\forall[/mm] t>0, deswegen ists
> ja auch konkav auf [mm]\IR^{+}...[/mm]  

da du in deinem ersten Post immer [mm] \le [/mm] geschrieben hast und von konkav gesprochen hast, hier auch gleich ein Gegenbeispiel für den Fall, dass du konkav meintest:

$f(x) = [mm] -e^{-x}-1$ [/mm] erfüllt alle deine Bedingungen, setze a=b=1

MFG,
Gono.

Bezug
                                
Bezug
Ungleichung konkave Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Do 07.04.2011
Autor: Salamence

Ach ich habs heute auch mit den Fehlern...

Wie auch immer: natürlich [mm] \le [/mm] ...
Dein Gegenbeispiel klappt aber so nicht, f verläuft ja nicht durch den Ursprung, es müsste +1 sein und dann stimmt die Ungleichung auch wieder, anscheinend...

Jedenfalls geht es darum:

[mm] (f\circ [/mm] d)(x,y)
[mm] \le [/mm] f(d(x,z)+d(y,z)) da d Metrik und f mon. wachsend
[mm] \le [/mm] f(d(x,z))+f(d(y,z)) da ich hoffe, dass die Ungleichung stimmt und man das auch irgendwie beweisen kann^^

Bezug
                                        
Bezug
Ungleichung konkave Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 07.04.2011
Autor: fred97

Sei b>0 fest. Setze für x [mm] \ge [/mm] 0:

            g(x):= f(x+b)-f(x)-f(b)

Dann ist g(0)=0. Wegen f'' [mm] \le [/mm] 0 auf [0, [mm] \infty) [/mm] ist  f' mon. fallend und somit

             g'(x)= f'(x+b)-f'(x) [mm] \le [/mm] 0  für x [mm] \in [/mm]  [0, [mm] \infty [/mm]

Ist nun a>0, so ist

              f(a+b)-f(a)-f(b) = g(a)= g(a)-g(0)

Aus dem Mittelwertsatz erhalten wir ein t [mm] \in [/mm] (0,a) mit:

                f(a+b)-f(a)-f(b) = a*g'(t) [mm] \le [/mm] 0.

Es folgt:  f(a+b) [mm] \le [/mm] f(a)+f(b)

FRED

                    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de