www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Ungleichungen
Ungleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Sa 16.12.2006
Autor: Sulaika

Aufgabe
Bestimmen sie die Lösungsmenge.
[mm] \bruch{12}{6-x}\le0 [/mm]

Beim lösen dieser Ungleichung ist mir aufgefallen, dass ich beim auflösen nach x kein  x mehr habe, da die Multiplikation mit Null wieder Null ergibt. Wo liegt mein Denkfehler? Bitte wenn möglich einen Nachvollziehbaren Lösungweg, denn bei den Ungleichungen mit [mm] \ge0 [/mm] habe ich die Lösungen begriffen.

MfG Sulaika

        
Bezug
Ungleichungen: Fallunterscheidung
Status: (Antwort) fertig Status 
Datum: 17:15 Sa 16.12.2006
Autor: Loddar

Hallo Sulaika!


Hast Du denn vor der Multiplikation mit $(6-x)_$ auch eine entsprechende Fallunterscheidung für $6-x \ > \ 0$  bzw.  $6-x \ < \ 0$ gemacht.

Nehmen wir mal den 2. Fall: $6-x \ < \ 0$   [mm] $\gdw$ [/mm]   $6 \ < \ x$

Bei der Multiplikation mit $(6-x)_$ dreht sich nun das Ungleichheitszeichen um:

$12 \ [mm] \red{\ge} [/mm] \ 0$  Dies ist offensichtlich eine wahre Aussage. Von daher ist als für diesen Fall $x \ > \ 6$ diese Ungleichhung immer erfüllt.


Wie sieht es nun mit dem anderen Fall $x \ < \ 6$ aus?


Gruß
Loddar


Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Sa 16.12.2006
Autor: Sulaika

Aufgabe
Beispiel
[mm] \bruch{7x}{2x-3}<4 [/mm]

Hey Lodda
ich rechne dies so:
2x-3=0 /+3
2x=3   /2
[mm] x=\bruch{3}{2} [/mm]
[mm] D=\IR\backslash\{\bruch{3}{2}\} [/mm]
1.Fall
HN=2x-3>0  /+3
           2x>3   /2
           [mm] x=\bruch{3}{2} [/mm]
[mm] \bruch{7x}{2x-3}<4 [/mm]  /*(2x-3)
         7x<8x-12     /-7x
          0<x-12    /+12
          12<x
[mm] L1=\{x\in\IR|x>12\} [/mm]
2.Fall
2x-3<0 [mm] \gdw x<\bruch{3}{2} [/mm]
[mm] \bruch{7x}{2x-3}<4 [/mm]   /*(2x-3)
     7x>8x-12      /-7x
      0>x-12        /+12
      12>x
[mm] L2=\{x\in\IR|x<\bruch{3}{2}\} [/mm]
[mm] L=L1\cpuL2=\{x\in\IR|x>12\veex<\bruch{3}{2}\} [/mm]

nun ist es mit [mm] \bruch{12}{6-x}\le0 [/mm]
aber dort geht der 1. Fall schonmal nicht weil 0*(6-x) doch Null ergibt und denn fehlt mir der Wert x, weil dieser dadurch wegfällt. Verstehst du mein Problem?
MfG
Sulaika  =@)

Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Sa 16.12.2006
Autor: DesterX

Hallo Sulaika -

Du hast natürlich recht: Du kannst hier eine Ungleichung nicht lösen wie eine Gleichung: Denn tatsächlich wird dein Ausdruck für kein gewähltes x jemals 0 .

Du musst dir einfach deinen Bruch anschauen und überlegen, wann dieser <0 bzw > 0 wird und in welcher Fällen er gar nicht definiert ist.
Gar nicht definiert ist der Ausdruck sicher, wenn du im Nenner eine '0' erhälst, denn durch '0' teilen ist bekanntlich nicht erlaubt.

Die Idee die man dann bekommt:

Der Zähler des Bruches ist bereits positiv - die Zahl insgesamt wird also negativ, wenn im Nenner etwas Negatives steht, dh hier, wenn 6-x<0 - analog gehst du vor im Fall "Positiv", nämlich "löst du": 6-x>0 - dazu kannst du dir ja nochmal den Beitrag von Loddar anschauen.

Gruß,
Dester

Bezug
                                
Bezug
Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:16 Sa 16.12.2006
Autor: Sulaika

hey
danke für diesen ansatz!Der hat mir sehr geholfen^-.darauf hätte ich auch gleich kommen können^^;
Danke sehr euch beiden!
MfG Sulaika

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de