www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Ungleichungen
Ungleichungen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:44 Sa 01.06.2013
Autor: yangwar1

Aufgabe
Für die Neueröffnung eines Hotels mit 1300 Betten akzeptieren Sie 1500 Buchungen. Kunden stornieren mit Wahrscheinlichkeit 0.2 eine Buchung. Schätzen Sie die Wahrscheinlichkeit einer Uberbelegung ab (mit der Chebycheff- und mit der Hoeffding-Ungleichung).


Hallo,

Wenn ich [mm] X_i [/mm] als bernoulliverteilte Zufallsvariable wähle mit 1, falls der Hotelgast kommt und 0 nicht, dann folgt mit der Hoeffding-Ungleichung:
[mm] -X_i [/mm] ist nach Bin(1,p) verteilt mit p=0.8
-Sei [mm] X=X_1+...+X_{1500}. [/mm] Dann gilt
[mm] P(X>1300)=P(X>=1301)=P(\bruch{1}{1500}*X>=1301)=P(\bruch{1}{1500}*X-0,8>=1301-0,8)<=Exp(-2*1500*(1301-0,8)^2)\approx [/mm] 1,23884*10^-4

Diesen Wert finde ich überraschend klein. Wenn ich nun n erhöhe, dann müsste doch eigentlich die Wahrscheinlichkeit größer werden, dass das Hotel überbelegt ist. Meine Abschätzung macht aber irgendwie keinen Sinn.

Die Chebycheff-Ungleichung liefert mir
[mm] P(\|X-E(X)\|>=100)<=\bruch{V(X)}{100^2}=\bruch{1500*0,8*0,2}{100^2} \approx [/mm] 0,024. Auch hier kommen aber offensichtlich falsche Abschätzungen heraus, wenn ich die Parameter verändere.

Wo liegen denn meine Fehler?


        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Sa 01.06.2013
Autor: Gonozal_IX

Hiho,


> Wenn ich [mm]X_i[/mm] als bernoulliverteilte Zufallsvariable wähle mit 1, falls der Hotelgast kommt und 0 nicht, dann folgt  mit der Hoeffding-Ungleichung:
>  [mm]-X_i[/mm] ist nach Bin(1,p) verteilt mit p=0.8
>  -Sei [mm]X=X_1+...+X_1500.[/mm] Dann gilt

Vorweg: Mehr als ein Index bitte in geschweifte Klammern setzen, dann sieht auch schön aus. Oder noch schöner:

$X = [mm] \summe_{i=1}^{1500}X_i$ [/mm]

>  
> [mm][mm] P(X>1300)=P(X>=1301)=P(\bruch{1}{1500}*X>=1301) [/mm]

Du machst hier viele Dinge falsch: Im letzten Schritt multiplizierst du die linke Seite einfach mit irgendeinem Faktor. Dass das keinen Sinn macht bzw das Ergebnis verfälscht, sollte dir schon intuitiv klar sein.
Dann ziehst du im nächsten Schritt 0,8 ab. Das stimmt aber nicht. Du musst ja für jedes [mm] X_i [/mm] 0,8 abziehen.
Oder wolltest du deswegen vorher mit dem [mm] \bruch{1}{1500} [/mm] normieren? Dann reicht es natürlich einmal, dann musst du das aber auch mit der rechten Seite tun!
So langsam dämmert es, was du vor hattest.....

Also fang mal langsam an, dann gehen wir das Schritt für Schritt durch.

> [mm]P(\|X-E(X)\|>=100)<=\bruch{V(X)}{100^2}=\bruch{1500*0,8*0,2}{100^2} \approx[/mm]  0,024.

Auch hier ist nicht klar, was du eigentlich machen willst.....

MFG,
Gono.

Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Sa 01.06.2013
Autor: yangwar1

Die genannten Einwände von dir sind eigentlich nur Abschreibfehler von meinen Blatt, die wegen der späten Uhrzeit entstanden sind^^.

Also:
Ich möchte die Wkeit von X>1300 wissen:
P(X>1300)=P(X [mm] \ge 1301)=P(\bruch{1}{1500}*X \ge \bruch{1301}{1500})=P(\bruch{1}{1500}*X-0,8 \ge \bruch{1301}{1500}-0,8)<=Exp(-2*1500*(\bruch{1301}{1500}-0,8)^2) \approx [/mm] 1.23884*10^-6. Jedenfalls erscheint mir der Wert als zu gering. Erhöhe ich die Anzahl der Reservierungen zum Beispiel auf 5000, dann wird der Wert noch kleiner, was ja keinen Sinn macht.

In meiner Version des Satzes gilt nämlich [mm] P(\bruch{1}{n}\summe_{i=1}^{n}X_i -EX_1>=e)<=exp(\bruch{-2*n*e^2}{(b-a)^2}). [/mm] Und [mm] E(X_1)=p=0,8. [/mm]

Bei der anderen Abschätzung hatte ich einen Fehler.
Wenn ich wissen möchte, dass von 1500 Reservierungen und 1300 Betten eine Überbuchung vorliegt, dann muss X-1300  [mm] \ge [/mm] 200 sein:
P(X-1300 [mm] \ge [/mm] 200) [mm] \le [/mm] P(|X-1300| [mm] \ge 200)<=\bruch{V(X)}{200^2}=\bruch{1500*0.8*0.2}{200^2} \approx [/mm] 0.00096
Geht die Abschätzung noch genauer mit der Chebycheff-Ungleichung?


Bezug
                        
Bezug
Ungleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 So 02.06.2013
Autor: yangwar1

Niemand mehr einen Hinweis? Ich verzweifle nämlich gerade, weil ich den Fehler nicht finde.

Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 So 02.06.2013
Autor: Gonozal_IX

Hiho,

> Also:
>  Ich möchte die Wkeit von X>1300 wissen:
>  P(X>1300)=P(X [mm]\ge 1301)=P(\bruch{1}{1500}*X \ge \bruch{1301}{1500})=P(\bruch{1}{1500}*X-0,8 \ge \bruch{1301}{1500}-0,8)<=Exp(-2*1500*(\bruch{1301}{1500}-0,8)^2) \approx[/mm] 1.23884*10^-6.

[ok]

> Jedenfalls erscheint mir der Wert als zu gering.

Warum?

> Erhöhe ich die Anzahl der Reservierungen zum Beispiel auf 5000, dann wird der Wert noch kleiner, was ja keinen Sinn macht.

Stimmt. Ersetzt du in deinen Gleichungen allerdings 1500 einfach durch 5000 (was du wohl getan hast), machst du plötzlich einen Fehler in deiner Gleichungskette und diese ist nicht mehr korrekt.
Wo? Tipp: Schau dir die Voraussetzungen der Ungleichung nochmal an.


Dann eine Bitte: Nutze doch bitte durchweg den Formeleditor. Zeichen wie ">=" sind einfach unschön zu lesen....

> Bei der anderen Abschätzung hatte ich einen Fehler.
>  Wenn ich wissen möchte, dass von 1500 Reservierungen und 1300 Betten eine Überbuchung vorliegt, dann muss X-1300  [mm]\ge[/mm] 200 sein:

[ok]

>  P(X-1300 [mm]\ge[/mm] 200) [mm]\le[/mm] P(|X-1300| [mm]\ge 200)<=\bruch{V(X)}{200^2}=\bruch{1500*0.8*0.2}{200^2} \approx[/mm] 0.00096

[ok]

>  Geht die Abschätzung noch genauer mit der  Chebycheff-Ungleichung?

Nein. Darum geht es bei der Aufgabe ja :-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de