www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Unstetigkeitsstellen und Typ
Unstetigkeitsstellen und Typ < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeitsstellen und Typ: Unstetigkeit
Status: (Frage) beantwortet Status 
Datum: 20:29 Mo 06.10.2008
Autor: Die_Ani

Aufgabe
f(x)= [mm] (x^2 [/mm] -9)/(x+3)

Hallo Leute,
ich habe hier eine schöne Aufgabe zu Stetigkeit. Wahrscheinlich nicht schwer, aber ich weiß nicht recht, ob ich es richtig gelöst habe.

Die Aufgabe lautet:
Bestimme sie Unstetigkeitsstellen von
f(x)= [mm] (x^2 [/mm] -9)/(x+3)
und welcher Typ von Unstetigkeit liegt vor.

Die Unstetikeitsstelle habe ich berechnet, indem ich den Nenner 0 gesetzt habe. also x=-3.
Danach habe ich den Grenzwert gegen -3 streben lassen und habe -6 rausbekommen. Kann das stimmen?
Bitte helft mir, ich sitze schin seit Ewigkeiten über diesem Problem.

Vielen Dank schonmal im Vorraus :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Unstetigkeitsstellen und Typ: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mo 06.10.2008
Autor: schachuzipus

Hallo Silvana und herzlich [willkommenmr],

> f(x)= [mm](x^2[/mm] -9)/(x+3)
>  Hallo Leute,
> ich habe hier eine schöne Aufgabe zu Stetigkeit.
> Wahrscheinlich nicht schwer, aber ich weiß nicht recht, ob
> ich es richtig gelöst habe.
>
> Die Aufgabe lautet:
>  Bestimme sie Unstetigkeitsstellen von
>  f(x)= [mm](x^2[/mm] -9)/(x+3)
>  und welcher Typ von Unstetigkeit liegt vor.
>  
> Die Unstetikeitsstelle habe ich berechnet, indem ich den
> Nenner 0 gesetzt habe. also x=-3. [ok]
>  Danach habe ich den Grenzwert gegen -3 streben lassen und
> habe -6 rausbekommen. Kann das stimmen? [ok]

Ja, sehr gut!

>  Bitte helft mir, ich sitze schin seit Ewigkeiten über
> diesem Problem.

Du kannst ja f mit der 3.binom. Formel schreiben als [mm] $f(x)=\frac{x^2-9}{x+3}=\frac{(x+3)(x-3)}{x+3}=x-3\longrightarrow [/mm] -3-3=-6$ für [mm] $x\to-3$ [/mm]

Hier hast du bei $x=-3$ also eine stetig hebbare Lücke vorliegen, du kannst also die Lücke von f bei $x=-3$ mit der zusätzlichen Definition $f(-3):=-6$ "heben"

>  
> Vielen Dank schonmal im Vorraus :)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


LG

schachuzipus

Bezug
                
Bezug
Unstetigkeitsstellen und Typ: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Mo 06.10.2008
Autor: Die_Ani

Hey super, vielen Dank! Und das auch noch so schnell...
die art das zu berechnen kannte ich gar nicht. nicht schlecht. habe das über ewig viele rechenschnritte gemacht. super :)

ich habe hier noch eine zweite aufgabe. Würde mich sehr freuen, wenn du hier auch noch einmal drüberschauen könntest!
also, gleiche fragestellung...
[mm] f(x)=x/(x^2 [/mm] -1)

Hier habe ich als unstetigkeitsstelle 1 rausbekommen und als Unstetigkeitstyp  eine Unstetigkeit zweiter Art (da x gegen unendlich strebt). kann das hinkommen?

mal wieder vielen dank im vorraus!

Bezug
                        
Bezug
Unstetigkeitsstellen und Typ: Antwort
Status: (Antwort) fertig Status 
Datum: 21:14 Mo 06.10.2008
Autor: pelzig


>  [mm]f(x)=x/(x^2[/mm] -1)
>  
> Hier habe ich als unstetigkeitsstelle 1 rausbekommen und
> als Unstetigkeitstyp  eine Unstetigkeit zweiter Art (da x
> gegen unendlich strebt). kann das hinkommen?

Was ist mit $x=-1$? Der "Unstetigkeitstyp" oder wie ihr das nennt stimmt. Beachte dass die Funktion an dieser Unstetigkeitsstelle ihr vorzeichen ändert.

Gruß, Robert


Bezug
                                
Bezug
Unstetigkeitsstellen und Typ: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Mo 06.10.2008
Autor: Die_Ani

Aaah, ja richtig. Das hätte ich total vergessen. Danke!
Dann hat man nun also eine Polstelle gerader Ordnung?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de