www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Unterbst. nichtln. Gl.Systeme
Unterbst. nichtln. Gl.Systeme < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterbst. nichtln. Gl.Systeme: Nichtlineare Gleichungssysteme
Status: (Umfrage) Beendete Umfrage Status 
Datum: 15:40 Mo 13.05.2013
Autor: DyingSoul

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

ich bin auf der Suche nach numerischen Verfahren zur Bestimmung der Lösung von unterbestimmten nichtlinearen Gleichungssystemen.

Ich hab bis jetzt nur Verfahren gefunden die mir genau eine Lösung liefern. Ich benötige allerdings nicht eine Lösung, sondern eine systematische Beschreibung des Lösungsraumes, d.h. alle Lösungen des Systems. Es ist völlig in Ordnung (und wahrscheinlich auch gar nicht anders möglich) dass dieser Lösungsraum numerisch zurückgegeben wird (z.b. als Menge von Lösungspunkten).

Um mal etwas konkreter zu werden: Ich habe z.b. eine nichtlinearen Zusammehang F(x,y,z). In Abhängigkeite von F ergibt sich ein ein- oder zwei-dimensionaler Lösungsraum und ich brauche eine allgemeine numerische Representation diesen Raumes. Das sollte für allgemeines F funktionieren.

Gibt es solche numerischen Verfahren?

Vielen Dank :)

        
Bezug
Unterbst. nichtln. Gl.Systeme: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Mi 22.05.2013
Autor: M.Rex

Hallo



>

> Um mal etwas konkreter zu werden: Ich habe z.b. eine
> nichtlinearen Zusammehang F(x,y,z). In Abhängigkeite von F
> ergibt sich ein ein- oder zwei-dimensionaler Lösungsraum
> und ich brauche eine allgemeine numerische Representation
> diesen Raumes. Das sollte für allgemeines F
> funktionieren.

Das einzige Verfahren, das sich dazu meiner Meinung nach eignet, ist das Einsetzungsverfahren, dieses musst du unter Umständen mehrfach anwenden. Aber auch das geht nur, wenn man die beteiligten Gleichungen komplett analytisch nach einer Variable umstellen kann.

Eventuell könnte es sogar reichen, wenn die letzte Gleichung per Näherungsverfahren zu lösen ist, dabei bin ich mir aber gerade nicht sicher.

Schön wäre es natürlich, wenn irgendwo im Gleichungssystem Umkehrfunktionen aufeinandertreffen, das erleichtert das Einsetzen meist ungemein.

>

> Gibt es solche numerischen Verfahren?

Vielleicht hat ja noch jemand anderes eine Idee, daher habe ich die Anfrage mal als Umfrage deklariert.

>

> Vielen Dank :)

Marius

Bezug
        
Bezug
Unterbst. nichtln. Gl.Systeme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 22.05.2013
Autor: fred97


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hi,
>  
> ich bin auf der Suche nach numerischen Verfahren zur
> Bestimmung der Lösung von unterbestimmten nichtlinearen
> Gleichungssystemen.
>  
> Ich hab bis jetzt nur Verfahren gefunden die mir genau eine
> Lösung liefern. Ich benötige allerdings nicht eine
> Lösung, sondern eine systematische Beschreibung des
> Lösungsraumes, d.h. alle Lösungen des Systems. Es ist
> völlig in Ordnung (und wahrscheinlich auch gar nicht
> anders möglich) dass dieser Lösungsraum numerisch
> zurückgegeben wird (z.b. als Menge von Lösungspunkten).
>  
> Um mal etwas konkreter zu werden: Ich habe z.b. eine
> nichtlinearen Zusammehang F(x,y,z). In Abhängigkeite von F
> ergibt sich ein ein- oder zwei-dimensionaler Lösungsraum
> und ich brauche eine allgemeine numerische Representation
> diesen Raumes. Das sollte für allgemeines F
> funktionieren.
>  
> Gibt es solche numerischen Verfahren?

Schau mal hier

http://de.wikipedia.org/wiki/Liste_numerischer_Verfahren

unter "Nichtlineare Gleichungssysteme ".

Vielleicht ist was für Dich dabei.

FRED

>  
> Vielen Dank :)  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de