www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Untergitter
Untergitter < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Mo 13.05.2013
Autor: Tine90

Aufgabe
[mm] \paragraph*{Satz 4.5.1:} [/mm] Seien [mm] $\Lambda\subseteq\Gamma$ [/mm] Gitter im [mm] $\mathbb{R}^n$. [/mm] Dann ist

[mm] \frac{d(\Lambda)}{d(\Gamma)}=: D\in\mathbb{N} [/mm]

und das Gitter [mm] $D\Gamma=\{Da|a\in\Gamma\}$ [/mm] erfüllt [mm] $D\Gamma\subseteq\Lambda\subseteq\Gamma$.\\ [/mm]
[mm] \textbf{Beweis:} [/mm] Sei [mm] $B=(b_1,\dots,b_n)$ [/mm] eine Basis von [mm] $\Lambda$ [/mm] und [mm] $A=(a_1,\dots,a_n)$ [/mm] eine Basis von [mm] $\Gamma$. [/mm] Dann existiert eine ganzzahlige [mm] $n\times [/mm] n$-Matrix V mit $B=AV$. V erfüllt offensichtlich $D=|det(V)|$, weil [mm] $D=\frac{vol(\Phi_\Lambda)}{vol(\Phi_\Gamma)}$ [/mm] und das ergibt das Volumen des Gitters, das durch V aufgespannt wird. Die Restklassen von [mm] $\Gamma [/mm] ~mod~ [mm] \Lambda$ [/mm] werden zum Beispiel durch jene Gitterpunkte von [mm] $\Gamma$ [/mm] repräsentiert, die in einer Grundmasche [mm] $\Phi_\Lambda$ [/mm] von [mm] $\Lambda$ [/mm] liegen und man kann theoretisch durch einen Vergleich mit dem Volumen von [mm] $\Phi_\Gamma$ [/mm] bereits jetzt sehen, dass die Anzahl [mm] $[\Gamma [/mm] : [mm] \Lambda]$ [/mm] dieser Repräsentanten der Restklassen genau D ist. DA ist also die Basis von [mm] $D\Gamma$ [/mm] und nach der Cramerschen Regel (vgl. Satz 3.5) hat die Matrix [mm] $DV^{-1}$ [/mm] ebenfalls ganzzahlige Koeffizienten. Dann folgt aus [mm] $DA=B\cdot DV^{-1}$, [/mm] dass DL ein Untergitter von [mm] $\Lambda$ [/mm] ist. [mm] \qed [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo =)
Ich habe hier einen Beweis über Untergitter, den ich nciht wirklich verstehe und wäre für jeden Tipp dankbar. Also ich hab verstanden, dass man das Volumen von [mm] $\Lambda$ [/mm] durch das Volumen von [mm] $\Gamma$ [/mm] teilt und dass das Volumen von [mm] $\Lambda$ [/mm] größer ist als das Volumen von [mm] $\Gamma$. [/mm] Ich verstehe aber vor allem die Umformung am Schluss nicht...
Lg =)

        
Bezug
Untergitter: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Di 14.05.2013
Autor: hippias


> [mm]\paragraph*{Satz 4.5.1:}[/mm] Seien [mm]\Lambda\subseteq\Gamma[/mm]
> Gitter im [mm]\mathbb{R}^n[/mm]. Dann ist
>
> [mm] \frac{d(\Lambda)}{d(\Gamma)}=: D\in\mathbb{N}[/mm]
>  
> und das Gitter [mm]D\Gamma=\{Da|a\in\Gamma\}[/mm] erfüllt
> [mm]D\Gamma\subseteq\Lambda\subseteq\Gamma[/mm][mm] .\\[/mm]
>  
> [mm]\textbf{Beweis:}[/mm] Sei [mm]B=(b_1,\dots,b_n)[/mm] eine Basis von
> [mm]\Lambda[/mm] und [mm]A=(a_1,\dots,a_n)[/mm] eine Basis von [mm]\Gamma[/mm]. Dann
> existiert eine ganzzahlige [mm]n\times n[/mm]-Matrix V mit [mm]B=AV[/mm]. V
> erfüllt offensichtlich [mm]D=|det(V)|[/mm], weil
> [mm]D=\frac{vol(\Phi_\Lambda)}{vol(\Phi_\Gamma)}[/mm] und das ergibt
> das Volumen des Gitters, das durch V aufgespannt wird. Die
> Restklassen von [mm]\Gamma ~mod~ \Lambda[/mm] werden zum Beispiel
> durch jene Gitterpunkte von [mm]\Gamma[/mm] repräsentiert, die in
> einer Grundmasche [mm]\Phi_\Lambda[/mm] von [mm]\Lambda[/mm] liegen und man
> kann theoretisch durch einen Vergleich mit dem Volumen von
> [mm]\Phi_\Gamma[/mm] bereits jetzt sehen, dass die Anzahl [mm][\Gamma : \Lambda][/mm]
> dieser Repräsentanten der Restklassen genau D ist. DA ist
> also die Basis von [mm]D\Gamma[/mm] und nach der Cramerschen Regel
> (vgl. Satz 3.5) hat die Matrix [mm]DV^{-1}[/mm] ebenfalls
> ganzzahlige Koeffizienten. Dann folgt aus [mm]DA=B\cdot DV^{-1}[/mm],
> dass DL ein Untergitter von [mm]\Lambda[/mm] ist. [mm]\qed[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo =)
>  Ich habe hier einen Beweis über Untergitter, den ich
> nciht wirklich verstehe und wäre für jeden Tipp dankbar.
> Also ich hab verstanden, dass man das Volumen von [mm]\Lambda[/mm]
> durch das Volumen von [mm]\Gamma[/mm] teilt und dass das Volumen von
> [mm]\Lambda[/mm] größer ist als das Volumen von [mm]\Gamma[/mm]. Ich
> verstehe aber vor allem die Umformung am Schluss nicht...
>  Lg =)

Du solltest etwas praeziser fragen! Auf jeden Fall solltest Du Dir die Eigenschaften der Adjunkten (=transponierte Kofaktormatrix) einer Matrix anschauen, denn damit geht es ganz einfach: Ist naemlich $V'$ die Adjunkte zu $V$, so gilt naemlich $VV'= det(V) E$, $E$ Einheitsmatrix. Damit ist $BV'= AVV'= AD$, und danach Definition $V'$ wieder ganzzahlig ist,folgt damit, dass die Vektoren $AD$ ganzzahlige Linearkombination der Vektoren $B$ sind.

Bezug
                
Bezug
Untergitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 26.05.2013
Autor: Tine90

Ok, aber in meinem Beweis geht es doch um die Inverse Matrix [mm] V^{-1} [/mm] oder? Ich verstehe nicht, warum wir [mm] DV^{-1} [/mm] brauchen und wie man auf [mm] DA=BDV^{-1} [/mm] kommt oder was die Gleichung aussagt...Könntest du mir da noch einmal weiterhelfen?
Liebe Grüße,
Tine

Bezug
                        
Bezug
Untergitter: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Mo 27.05.2013
Autor: hippias

Wie bereits erwaehnt: Ist $V'$ die Adjunkte zu $V$,so ist ganz allgemein $V'V= VV'= DE$, $E$ Einheitsmatrix. Dann folgt doch [mm] $V^{-1}= D^{-1}V'$, [/mm] weshalb das [mm] $DV^{-1}$, [/mm] das in Deinem Beweis benutzt wird, nichts anderes als meine Adjunkte $V'$ ist, die nach Definition ganzzahlig ist, weil $V$ ganzzahlig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de