www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Untergruppe
Untergruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:29 Do 14.11.2013
Autor: ElizabethBalotelli

Aufgabe
Sei die von E:= {(-2,-2),(1,3),(3,1))} erzeugt Untergruppe [mm] G:=\left\langle E \right\rangle [/mm] := [mm] \left\langle E \right\rangle_{\IZ^{2}}\subset\IZ^2 [/mm]
Finde F [mm] \subset\IZ^2 [/mm] mit #F=2 und G= [mm] \left\langle F \right\rangle [/mm]

Ich hab mir E mal in ein Gitter eingezeichnet. Ich suche jetzt praktisch so ein F, das die gleichen Punkte trifft, aber nur aus 2 Elementen besteht, stimmts? Wie finde ich so was? Muss ich dazu irgendwie ausnutzen, dass es einmal den Punkt (3,1) und einmal den (1,3) gibt?

Danke für Ratschläge =)

        
Bezug
Untergruppe: Nicht durchdachte Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:38 Fr 15.11.2013
Autor: weightgainer

Ich hab mir das als Erzeugendensystem eines Vektorraums vorgestellt (wenn das Gitter gezeichnet ist, ist es verführerisch, sich das als Vektoren vorzustellen), dann sind diese drei linear abhängig, d.h. kein minimales Erzeugendensystem. Bei Vektorräumen ist es dann aber leicht, ich nehme einfach nur zwei der Vektoren und zeige, dass ich den dritten damit darstellen kann (also hat man ja schon beim Nachweis der linearen Abhängigkeit gemacht).

Was ich jetzt nicht weiß, ob und wenn ja wie man das auf die Gruppen überträgt. Aber vielleicht ist das eine Anregung, die du kreativ nutzen kannst.


Bezug
        
Bezug
Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Fr 15.11.2013
Autor: wieschoo

Der gebrachte Hinweis war schon der richtige. Die Gruppenoperation ist die Addition also kannst du dir wirklich alle Elemente als Linearkombination vorstellen.

             [mm]a\cdot (-2,-2)+b\cdot (1,3)+c\cdot (3,1)[/mm] mit [mm]a,b,c\in\IZ[/mm]

Man könnte sogar die lineare Algebra verpulvern und darauf anwenden, solange du sicherstellst, dass deine "Gruppenerzeuger" tatsächlich aus [mm]\IZ\times \IZ[/mm] kommen.

Wie findet man [mm]\langle h,j\rangle=:F[/mm]? Entweder durch scharfes hinsehen (einfach mal in der gaußchen Zahlenebene die Gitterpunkte markieren) oder ähnlich zur Bestimmung von Basen des Raumes.

Beachte, dass wegen der Gruppeneigenschaft auch immer das additive Inverse in [mm]E[/mm] liegt.

Bezug
                
Bezug
Untergruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Fr 15.11.2013
Autor: ElizabethBalotelli

Danke euch beiden schon mal. Ich hab mir das jetzt noch mal neu in so ein Gitter gezeichnet, und glaube, eine mögliche Lösung gefunden zu haben.
Und zwar F:={(1,1),(1,3)}
Kann das sein? Wär schön, noch mal ein Feedback zu bekommen =)

Bezug
                        
Bezug
Untergruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Fr 15.11.2013
Autor: wieschoo

Das kannst du doch selbst testen!

Solange du deine angegebenen Elemente so verknüpfen kannst, sodass du die Erzeuger aus $E$ erhälst, ist alles richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de