www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Untergruppen
Untergruppen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Aufgabe 3
Status: (Frage) beantwortet Status 
Datum: 17:17 Mi 07.11.2007
Autor: Sushigl

Aufgabe
Sei (G, *) eine Gruppe und M eine Teilmenge von G.
Setze Cg (M) = {x e G | xm =mx für alle m e M}.
Zeigen Sie, dass Cg(M) eine Untergruppe von G ist.
( Cg soll C index G sein und e soll Element von heißen)

Hier soll man ja Assosiativität, Abgeschlossenheit und Vorhandensein des Neutralen und Inversen Elementes in der Untergruppe nachweisen...Nur leider weiß ich nicht wie ich da rangehen soll. Kann mir da jemand genau helfen??

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 07.11.2007
Autor: andreas

hi

>  Hier soll man ja Assosiativität, Abgeschlossenheit und
> Vorhandensein des Neutralen und Inversen Elementes in der
> Untergruppe nachweisen...

du hast doch erstmal eine gruppe $G$ gegeben, deren elemente alle gruppenaxiome erfüllen. nun wird eine teilmenge [mm] $C_G(M) [/mm] = [mm] \{x \in G: mx = xm \; \forall \, m \in M\} \subseteq [/mm] G$ definiert. dafür musst du nur die untergruppenaxiome kontrollieren. schau mal nach, wie die bei euch aussahen, die sind immer etwas verschieden. etwa die assoziativität brauchst du nicht prüfen, da die schon in $G$ gilt und die elemente con [mm] $C_G(M)$ [/mm] sind ja nach definition auch elemente von $G$.


> Nur leider weiß ich nicht wie ich
> da rangehen soll. Kann mir da jemand genau helfen??

wie gesagt: schreib dir die unterguppen eigenschaften auf und kontrolliere diese.
gilt etwa $1 [mm] \in C_G(M)$? [/mm]

grüße
andreas

Bezug
                
Bezug
Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:48 Do 08.11.2007
Autor: Sushigl

Danke für deinen Rat.
Mich irritiert noch ein wenig was damit gemeint ist, dass für x Element G xm=mx gemeint ist...

Bezug
                        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Do 08.11.2007
Autor: andreas

hi

das heißt doch einfach, dass $x$ genau dann in [mm] $C_G(M)$ [/mm] ist, wenn $x$ mit jeden element aus $M$ vertauscht. überleg dir doch beispielsweise wie für $G = [mm] S_3$ [/mm] und $M = [mm] \{(12)\}$ [/mm] die menge [mm] $C_{S_3}(\{(12)\})$ [/mm] aussieht. ist das eine untergruppe?

grüße
andreas

Bezug
                                
Bezug
Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Do 08.11.2007
Autor: Sushigl

G=S3 soll was bedeuten???
Ich glaube das haben wir weder in unserer Vorlesung noch in den Übungen durchgenommen...
Danke für deine Hilfe

Bezug
                                        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Do 08.11.2007
Autor: andreas

hi

> G=S3 soll was bedeuten???
>  Ich glaube das haben wir weder in unserer Vorlesung noch
> in den Übungen durchgenommen...

damit habe ich die []symmetrische gruppe auf drei ziffern gemeint. das ist eine gruppe mit $6$ elementen und die kleinste nicht abelsche gruppe (nur dann ist [mm] $C_G(M)$ [/mm] interessant). aber wenn du das nicht kennst vergiss das beispiel einfach wieder. wie gesagt: du musst nur die untergruppenaxiome verifizieren. gib diese doch mal an und zeige, wie weit du bei der rechnung kommst, dann können wir dir konkret weiterhelfen.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de