www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Untermannigfaltigkeit
Untermannigfaltigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:55 Di 22.07.2008
Autor: jaruleking

Aufgabe
Die Funktionen f,g: [mm] \IR^3 \to \IR [/mm] seien durch [mm] f(x,y,z)=x^2+xy-y-z [/mm] , [mm] g(x,y,z)=2x^2+3xy-2y-3z [/mm] definiert. Zeigen Sie, dass [mm] C=\{(x,y,z) \in \IR^3 | f(x,y,z)=g(x,y,z)=0 \} [/mm] eine eindimensionale Untermannigfaltigkeit des [mm] \IR^3 [/mm] ist und dass [mm] h(t)=(t,t^2,t^3) [/mm] eine globale Parametrisierung von C darstellt.

Habe einige Schwierigkeiten mit der Lösung dieser Aufgabe.

Lösung:

Wegen [mm] f(t,t^2,t^3)=0 [/mm] und [mm] g(t,t^2,t^3)=0 [/mm] für alle t [mm] \in \IR [/mm] gilt [mm] h(\IR) \subseteq [/mm] C. Um die umgekehrte Einbettung einzusehen, bemerken wir, dass für (x,y,z) [mm] \in [/mm] C gilt:

xy-z=g(x,y,z)-2f(x,y,z)=0 und [mm] x^2-y=3f(x,y,z)-g(x,y,z)=0. [/mm]

Wir erhalten [mm] y=x^2 [/mm] und [mm] z=xy=x^3, [/mm] also (x,y,z) [mm] \in h(\IR). [/mm] Es folgt, dass h eine globale Parametrisierung von C darstellt. Die Gradienten

Grad f(x,y,z)=(2x+y,x-1,-1) und Grad g(x,y,z)=(4x+3y,3x-2,-3) sind für jeden Punkt (x,y,z) [mm] \in [/mm] C linear unabhängig, also ist C eine eindimensionale Untermannigfaltigkeit des [mm] \IR^3. [/mm]



So, das erste ist ja noch klar, aber dann, wie kommen die auf:

xy-z=g(x,y,z)-2f(x,y,z)=0 und [mm] x^2-y=3f(x,y,z)-g(x,y,z)=0, [/mm] wie soll man auf sowas kommen und warum machen die das? das habe ich noch nicht verstanden.

Und wie entstehen [mm] y=x^2 [/mm] und [mm] z=xy=x^3, [/mm] also (x,y,z) [mm] \in h(\IR). [/mm] Es folgt, dass h eine globale Parametrisierung von C darstellt und wieso folgt daraus die Parametrisierung?

Und das die Gradienten linear unabhängig sein müssen, war mir jetzt auch neu, aber naja.

Wäre echt super, wenn mir jemand die Dinge mal erklären könnte.

Gruß

        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Di 22.07.2008
Autor: rainerS

Hallo!

> Die Funktionen f,g: [mm]\IR^3 \to \IR[/mm] seien durch
> [mm]f(x,y,z)=x^2+xy-y-z[/mm] , [mm]g(x,y,z)=2x^2+3xy-2y-3z[/mm] definiert.
> Zeigen Sie, dass [mm]C=\{(x,y,z) \in \IR^3 | f(x,y,z)=g(x,y,z)=0 \}[/mm]
> eine eindimensionale Untermannigfaltigkeit des [mm]\IR^3[/mm] ist
> und dass [mm]h(t)=(t,t^2,t^3)[/mm] eine globale Parametrisierung von
> C darstellt.
>  Habe einige Schwierigkeiten mit der Lösung dieser
> Aufgabe.
>  
> Lösung:
>  
> Wegen [mm]f(t,t^2,t^3)=0[/mm] und [mm]g(t,t^2,t^3)=0[/mm] für alle t [mm]\in \IR[/mm]
> gilt [mm]h(\IR) \subseteq[/mm] C. Um die umgekehrte Einbettung
> einzusehen, bemerken wir, dass für (x,y,z) [mm]\in[/mm] C gilt:
>  
> xy-z=g(x,y,z)-2f(x,y,z)=0 und [mm]x^2-y=3f(x,y,z)-g(x,y,z)=0.[/mm]
>  
> Wir erhalten [mm]y=x^2[/mm] und [mm]z=xy=x^3,[/mm] also (x,y,z) [mm]\in h(\IR).[/mm]
> Es folgt, dass h eine globale Parametrisierung von C
> darstellt. Die Gradienten
>
> Grad f(x,y,z)=(2x+y,x-1,-1) und Grad
> g(x,y,z)=(4x+3y,3x-2,-3) sind für jeden Punkt (x,y,z) [mm]\in[/mm] C
> linear unabhängig, also ist C eine eindimensionale
> Untermannigfaltigkeit des [mm]\IR^3.[/mm]
>  
>
>
> So, das erste ist ja noch klar, aber dann, wie kommen die
> auf:
>  
> xy-z=g(x,y,z)-2f(x,y,z)=0 und [mm]x^2-y=3f(x,y,z)-g(x,y,z)=0,[/mm]

Die erste Identität kannst du jeweils nachrechnen, in dem du Definition von f und g einsetzt. Und f und g sind 0 für alle Punkte in C, per Definition von C.

> Und wie entstehen [mm]y=x^2[/mm] und [mm]z=xy=x^3,[/mm] also (x,y,z) [mm]\in h(\IR).[/mm]

Da steht links: $xy-z=0$ und rechts [mm] $x^2-y=0$. [/mm] Musst du nur noch ineinander einsetzen.

> Es folgt, dass h eine globale Parametrisierung von C
> darstellt und wieso folgt daraus die Parametrisierung?

Aus [mm] $(x,y,z)\in [/mm] C$ folgt [mm] $(x,y,z)\in h(\IR)$, [/mm] also ist [mm] $C\subseteq h(\IR)$. [/mm] Da aber schon [mm] $h(\IR)\subseteq [/mm] C$ gilt, ist [mm] $C=h(\IR)$. [/mm]

> Und das die Gradienten linear unabhängig sein müssen, war
> mir jetzt auch neu, aber naja.

Damit C eine eindimensionale Untermannigfaltigkeit ist, muss 0 ein regulärer Wert der Abbildung

[mm]\vektor{f\\g}:\IR^3\to\IR^2 [/mm]

sein, also die Jacobimatrix dieser Abbildung Rang 2 haben. Das bedeutet, dass die beiden Gradienten linear unabhängig sein müssen.

  Viele Grüße
    Rainer



Bezug
                
Bezug
Untermannigfaltigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Di 22.07.2008
Autor: jaruleking

Hi, danke für die schnelle Antwort, aber eins habe ich immer noch nicht verstanden:


xy-z=g(x,y,z)-2f(x,y,z)=0 und [mm] x^2-y=3f(x,y,z)-g(x,y,z)=0. [/mm] Das die Sachen gelten, ist mir schon klar, nur warum machen die das? denn woher soll man darauf kommen, sowas aufzustellen  g(x,y,z)-2f(x,y,z) oder 3f(x,y,z)-g(x,y,z). Was steckt dahinter???

Und xy-z=0, nur weil (x,y,z) [mm] \in [/mm] C sind? Aber bei C steht doch nur, wenn f(x,y,z)=g(x,y,z), dass das nul ist. aber nicht für g(x,y,z)-2f(x,y,z)??

Und hat unsere Jackobi Matrix nicht Rang 3???

Bezug
                        
Bezug
Untermannigfaltigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:31 Di 22.07.2008
Autor: rainerS

Hallo!

> Hi, danke für die schnelle Antwort, aber eins habe ich
> immer noch nicht verstanden:
>  
>
> xy-z=g(x,y,z)-2f(x,y,z)=0 und [mm]x^2-y=3f(x,y,z)-g(x,y,z)=0.[/mm]
> Das die Sachen gelten, ist mir schon klar, nur warum machen
> die das? denn woher soll man darauf kommen, sowas
> aufzustellen  g(x,y,z)-2f(x,y,z) oder 3f(x,y,z)-g(x,y,z).
> Was steckt dahinter???

Den Term mit [mm] $x^2$ [/mm] beziehungsweise mit $xy$ loszuwerden. Alle anderen Terme in f und g sind linear, deswegen liegt es nahe, diese beiden zu eliminieren.

>  
> Und xy-z=0, nur weil (x,y,z) [mm]\in[/mm] C sind? Aber bei C steht
> doch nur, wenn f(x,y,z)=g(x,y,z), dass das nul ist. aber
> nicht für g(x,y,z)-2f(x,y,z)??

C ist definiert als die Menge der Punkte $(x,y,z)$, für die $f(x,y,z)=0$ und $g(x,y,z)=0$ ist. also ist auch $g-2f=0$ und $3f-g=0$.

>  
> Und hat unsere Jackobi Matrix nicht Rang 3???

Wie kann das sein, da die Abbildung von [mm] $\IR^3$ [/mm] nach [mm] $\IR^2$ [/mm] geht, ist es eine [mm] $3\times [/mm] 2$-Matrix.

Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de