Untermannigfaltigkeiten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
hab zur Zeit einige Probleme mit dem Begriff der Untermannigfaltigkeit.
Wir haben eine (berandete) Untermannigfaltigkeit wie folgt definiert:
Wir verstehen darunter eine Teilmenge M [mm] \subset [/mm] V, wobei es zu p [mm] \in [/mm] M
1. eine offene Teilmenge I [mm] \subset H^k [/mm] gibt
2. eine offene Teilmenge U [mm] \subset [/mm] M mit p [mm] \in [/mm] U gibt
3. eine [mm] C^\infty [/mm] -Abbildung [mm] \alpha: [/mm] I [mm] \to [/mm] U gibt, sodass gilt:
a) [mm] \alpha: [/mm] I [mm] \to [/mm] U ist bijektiv und [mm] D(\alpha)(x): \IR^k \to [/mm] V ist injektiv für x [mm] \in [/mm] I
b) [mm] \alpha^{-1} [/mm] : U [mm] \to [/mm] I ist stetig.
[mm] H^k [/mm] bezeichne dabei die Menge [mm] \{ (x_1,...,x_k) \in \IR^k | x_k \ge 0 \}
[/mm]
[mm] \partial H^k [/mm] := [mm] \{ (x_1,...,x_k) \in H^k | x_k = 0 \}
[/mm]
Soweit sogut. Nun heißt p ein Randpunkt p [mm] \in [/mm] M , wenn es eine Karte (I, U, [mm] \alpha) [/mm] um p gibt mit [mm] \alpha^{-1}(p) \in \partial H^k.
[/mm]
Meine Frage ist jetzt: Wie ist das letztere möglich? I ist eine offene Menge von [mm] H^k, [/mm] also insbesondere kann kein Punkt von [mm] \partial H^k [/mm] in I enthalten sein. Also kann es doch eigentlich auch keine lokale Karte geben, die das erfüllt (denn die Abbildung ist ja bijektiv I [mm] \to [/mm] U ), oder?
Wo liegt hier mein Denkfehler oder ist die Definition ohne Sinn?
Weiterhin haben wir den Begriff der Untermannigfaltigkeit und Mannigfaltigkeit fast immer analog benutzt (meine ich zumindest). Gibts da echt keinen Unterschied??
Danke schonmal für eure Bemühungen
|
|
|
|
Hallo
> Wir verstehen darunter eine Teilmenge M [mm]\subset[/mm] V, wobei
> es zu p [mm]\in[/mm] M
> 1. eine offene Teilmenge I [mm]\subset H^k[/mm] gibt
offen heißt hier, offen bzgl der Relativtopologie von [mm] H^{k}
[/mm]
> Meine Frage ist jetzt: Wie ist das letztere möglich? I ist
> eine offene Menge von [mm]H^k,[/mm] also insbesondere kann kein
> Punkt von [mm]\partial H^k[/mm] in I enthalten sein. Also kann es
> doch eigentlich auch keine lokale Karte geben, die das
> erfüllt (denn die Abbildung ist ja bijektiv I [mm]\to[/mm] U ),
> oder?
Ist deine Frage damit beantwortet?
> Weiterhin haben wir den Begriff der Untermannigfaltigkeit
> und Mannigfaltigkeit fast immer analog benutzt (meine ich
> zumindest). Gibts da echt keinen Unterschied??
Jede Untermannigfaltigkeit ist natürlich eine Mannigfaltigkeit.
Man kann aber abstrakt Mannigfaltigkeiten betrachten, die nicht Teilmenge einer anderen Menge sind.
Insofern ist schon ein Unterschied.
Andrerseits kann jede solche Mannigfaltigkeit in einen [mm] \IR^{n} [/mm] ,für genügend großes n, eingebettet werden.
So gesehen ist der Unterschied nicht all zu groß.
Gruß korbinian
|
|
|
|
|
ja, erstmal danke für die schnelle Antwort,
ich denke dass damit meine Frage geklärt ist, weiß den Begriff der Relativtopologie allerdings gar net einzuordnen. Haben wir glaub ich noch nicht durchgenommen (gehört das nicht mehr in die Topologie?). Gibts da noch eine andere Formulierung für oder generell eine Abschwächung?
Danke
Gruß
|
|
|
|
|
Hallo
in deiner Definition von berandeter Untermannigfaltigkeit ist von offenen Mengen des [mm] H^{k} [/mm] die Rede. Was soll das sein? Dazu muss es doch eine Topologie auf [mm] H^{k} [/mm] geben. Diese "erbt" er vom [mm] \IR^{k}. [/mm] Und zwar so:
Eine Menge V [mm] \subset H^{k} [/mm] heißt offen, wenn es eine offene Menge [mm] U\subset \IR^{k} [/mm] gibt, so dass V=U [mm] \cap H^{k} [/mm] ist. Siehe Bild
[Dateianhang nicht öffentlich]
Gruß korbinian
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|
|
OK,
alles klar, jetzt hats klick gmacht .
Danke
|
|
|
|