www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterräume
Unterräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 12.01.2008
Autor: iMeN

Aufgabe
Man prüfe, ob die folgenden Mengen Trägermengen eines Unterraums des [mm] \IR^{2} [/mm] sind.

a) M1 = {(x,y) [mm] \in \IR^{2} [/mm] : x + y - 1 = 0}

Ich muss also Prüfen

1) M1 darf nicht leer sein!

- > M1 ist nicht leer, weil alle Vektoren x, y die die Gleichung x + y = 1 erfüllen in M1 liegen

2) Für x, y [mm] \in [/mm] M1 gilt: x + y = z, z [mm] \in [/mm] M1

->  (x1 + y1 - 1) + (x2 + y2 - 1) = (x1+x2) + (y1+y2) - 2 = z

z ist [mm] \in [/mm] M1 nur dann wenn (x1+x2) + (y1+y2) = 2

3) Für alle k [mm] \in \IR [/mm] und u [mm] \in [/mm] M1 muss gelten: k*u = l , l [mm] \in [/mm] M1

-> k(x + y - 1) = kx + ky - k [mm] \in [/mm] M1 genau dann wenn: k(x+y) = k, d.h. x=1-y oder y=1 - x.


Frage nun : da die Eigenschaften 2) und 3) nur für bestimmte x, y [mm] \in \IR^{2} [/mm] gilt und nicht für alle, folgere ich dass M1 kein Unterraum des [mm] \IR^{2} [/mm] ist!

oder ist M1 doch ein Unterraum des [mm] \IR^{2} [/mm] wenn ich mich auf Vektoren beschränke die die Eigenschaften 2) und 3) erfüllen?


Gruß an alle :)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Sa 12.01.2008
Autor: DaReava

Hallo!

Wie du richtig geschrieben hast, muss ein Unter(verktor)raum (ich gehe davon aus dass das hier gefragt ist, die Aufgabenstellung hat mich leicht befremdet)
1) Nichtleer
2) Abgeschlossen bzgl der Addition, und
3) Abgeschlossen bzgl der Multiplikation mit Skalaren sein.

Wenn du den begründeten verdacht hast, eine Teilmenge sei kein Unterraum, ist es der einfachste Weg, das durch ein konkretes Gegenbeispiel zu beweisen.

wähle also
$ [mm] a:=(\bruch{1}{2},\bruch{1}{2}) \in M_1 [/mm] $
Dann gilt: [mm] (a+a)=(\bruch{1}{2}+\bruch{1}{2},\bruch{1}{2}+\bruch{1}{2})=(1,1) [/mm]
Für dieses so gebildete Tupel namens (a+a) gilt:

$ (a+a)=(1,1) [mm] \not\in M_1 [/mm] $ , da $ 1+1-1 [mm] \not= [/mm] 0 $

Das zu zeigen reicht dann schon aus, da dann die Abgeschl. bzgl. der Addition nicht gegeben ist (und $ [mm] M_1 [/mm] $ somit kein Unterraum mehr sein kann).


Ein kleiner Fehler der mir an dieser Stelle in deinem Ansatz aufgefallen ist:
==

>  ->  (x1 + y1 - 1) + (x2 + y2 - 1) = (x1+x2) + (y1+y2) - 2 = z

==
du rechnet hier mitsamt dem ganzen Kriterium, desshalb steht am Ende bei dir auch "-2".

$ [mm] M_1 [/mm] = [mm] \{ (x,y) \in \IR^{2} | x + y - 1 = 0 \} [/mm] $
ist aber als eine (unendlich große) Menge von 2-Tupeln zu verstehen, die eine bestimmte Eigenschaft besitzen (eben $ x+y-1=0 $ )

P.S.: Das obige Beispiel wäre auch als Beispiel für Punkt 3) zu gebrauchen,
es entspricht $ (2*a) $ und es ist ja $ [mm] 2\in \IR [/mm] $

wenn das noch unklar ist, frag ruhig nach!

LG reava



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de