www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Unterräume
Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:27 So 23.01.2005
Autor: ThomasK

Hallo

Ich hab die Aufgabe.

[mm] U,U_{1} [/mm] und [mm] U_{2} [/mm] seien Unterräume des Vektorraumes V und [mm] U_{1} \subseteq U_{2}. [/mm]

Jetzt sollen wir beweisen, das
1) [mm] (U_{2} \cap U)/(U_{1}\cap [/mm] U) ist isomorph zu einem Unterraum von [mm] U_{2}/U_{1} [/mm]

[mm] 2)(U_{2} [/mm] + [mm] U)/(U_{1}+ [/mm] U) ist isomorph zu einem Faktorraum von [mm] U_{2}/U_{1} [/mm]

Leider weiß ich aber nicht wie ich da anfangen soll.
Kann mir da jemand weiter helfen.

mfg
Thomas

        
Bezug
Unterräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Mo 24.01.2005
Autor: ThomasK

hat keiner ne Idee?

Thomas

Bezug
                
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 24.01.2005
Autor: Paulus

doch schon, aber man fürchtet wieder diese endlosen, trivialen Fragen.

Bezug
                        
Bezug
Unterräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Mo 24.01.2005
Autor: ThomasK

Hi Paulus

Ich werd diesmal auch ein bischen mehr überlegeben ;-)

Lg, Thomas

Bezug
        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Di 25.01.2005
Autor: Julius

Hallo Thomas!

  

> [mm]U,U_{1}[/mm] und [mm]U_{2}[/mm] seien Unterräume des Vektorraumes V und
> [mm]U_{1} \subseteq U_{2}. [/mm]
>  
> Jetzt sollen wir beweisen, das
>  1) [mm](U_{2} \cap U)/(U_{1}\cap[/mm] U) ist isomorph zu einem
> Unterraum von [mm]U_{2}/U_{1} [/mm]

Betrachte die Abbildung

$f : [mm] \begin{array}{ccc} U_2 \cap U & \to & U_2/U_1\\[5pt] u & \mapsto & u + U_1 \end{array}$. [/mm]

Offenbar gilt: [mm] $Kern(f)=U_1 \cap [/mm] U$. Aus dem Homomorphiesatz folgt:

[mm] $(U_2 \cap U)/(U_1 \cap U_2) [/mm] = [mm] (U_2 \cap [/mm] U)/Kern(f) [mm] \cong [/mm] Bild(f) [mm] \subset U_2/U_1$, [/mm]

also die Behauptung.

> [mm]2)(U_{2}[/mm] + [mm]U)/(U_{1}+[/mm] U) ist isomorph zu einem Faktorraum
> von [mm]U_{2}/U_{1} [/mm]

Betrachte hier mal die Abbildung

$g : [mm] \begin{array}{ccc} U_2/U_1 & \to & (U_2+U)/(U_1+U)\\[5pt] u + U_1 & \mapsto & u + U_1 +U \end{array}$. [/mm]

Weise nach, dass $g$ wohldefiniert und surjektiv ist. Daraus folgt dann wiederum mit dem Homomorphiesatz die Behauptung.

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de